IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43675-4.html
   My bibliography  Save this article

Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel

Author

Listed:
  • Chung Il Park

    (Seoul National University
    Seoul National University)

  • Seungah Choe

    (Seoul National University
    Seoul National University)

  • Woorim Lee

    (Seoul National University
    Seoul National University)

  • Wonjae Choi

    (Korea Research Institute of Standards and Science (KRISS)
    University of Science and Technology (UST))

  • Miso Kim

    (Sungkyunkwan University (SKKU)
    Sungkyunkwan University (SKKU))

  • Hong Min Seung

    (Korea Research Institute of Standards and Science (KRISS)
    University of Science and Technology (UST))

  • Yoon Young Kim

    (Seoul National University
    Seoul National University)

Abstract

Imaging technologies that provide detailed information on intricate shapes and states of an object play critical roles in nanoscale dynamics, bio-organ and cell studies, medical diagnostics, and underwater detection. However, ultrasonic imaging of an object hidden by a nearly impenetrable metal barrier remains intractable. Here, we present the experimental results of ultrasonic imaging of an object in water behind a metal barrier of a high impedance mismatch. In comparison to direct ultrasonic images, our method yields sufficient object information on the shapes and locations with minimal errors. While our imaging principle is based on the Fabry-Perot (FP) resonance, our strategy for reducing attenuation in our experiments focuses on customising the resonance at any desired frequency. To tailor the resonance frequency, we placed an elaborately engineered panel of a specific material and thickness, called the FP resonance-tailoring panel (RTP), and installed the panel in front of a barrier at a controlled distance. Since our RTP-based imaging technique is readily compatible with conventional ultrasound devices, it can realise underwater barrier-through imaging and communication and enhance skull-through ultrasonic brain imaging.

Suggested Citation

  • Chung Il Park & Seungah Choe & Woorim Lee & Wonjae Choi & Miso Kim & Hong Min Seung & Yoon Young Kim, 2023. "Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43675-4
    DOI: 10.1038/s41467-023-43675-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43675-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43675-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaitanya A. Gadre & Xingxu Yan & Qichen Song & Jie Li & Lei Gu & Huaixun Huyan & Toshihiro Aoki & Sheng-Wei Lee & Gang Chen & Ruqian Wu & Xiaoqing Pan, 2022. "Nanoscale imaging of phonon dynamics by electron microscopy," Nature, Nature, vol. 606(7913), pages 292-297, June.
    2. Claudia Errico & Juliette Pierre & Sophie Pezet & Yann Desailly & Zsolt Lenkei & Olivier Couture & Mickael Tanter, 2015. "Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging," Nature, Nature, vol. 527(7579), pages 499-502, November.
    3. Seokchan Yoon & Hojun Lee & Jin Hee Hong & Yong-Sik Lim & Wonshik Choi, 2020. "Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. David B. Lindell & Gordon Wetzstein, 2020. "Three-dimensional imaging through scattering media based on confocal diffuse tomography," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Javier Sanz & Zahi A. Fayad, 2008. "Imaging of atherosclerotic cardiovascular disease," Nature, Nature, vol. 451(7181), pages 953-957, February.
    6. Matthew O’Toole & David B. Lindell & Gordon Wetzstein, 2018. "Confocal non-line-of-sight imaging based on the light-cone transform," Nature, Nature, vol. 555(7696), pages 338-341, March.
    7. Tanja A. Schwickert & Randall L. Lindquist & Guy Shakhar & Geulah Livshits & Dimitris Skokos & Marie H. Kosco-Vilbois & Michael L. Dustin & Michel C. Nussenzweig, 2007. "In vivo imaging of germinal centres reveals a dynamic open structure," Nature, Nature, vol. 446(7131), pages 83-87, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungsam Kang & Yongwoo Kwon & Hojun Lee & Seho Kim & Jin Hee Hong & Seokchan Yoon & Wonshik Choi, 2023. "Tracing multiple scattering trajectories for deep optical imaging in scattering media," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Florian Willomitzer & Prasanna V. Rangarajan & Fengqiang Li & Muralidhar M. Balaji & Marc P. Christensen & Oliver Cossairt, 2021. "Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Yaoyao Shi & Wei Sheng & Yangyang Fu & Youwen Liu, 2023. "Overlapping speckle correlation algorithm for high-resolution imaging and tracking of objects in unknown scattering media," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Dongyu Du & Xin Jin & Rujia Deng & Jinshi Kang & Hongkun Cao & Yihui Fan & Zhiheng Li & Haoqian Wang & Xiangyang Ji & Jingyan Song, 2022. "A boundary migration model for imaging within volumetric scattering media," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Dorian Bouchet & Olivier Stephan & Benjamin Dollet & Philippe Marmottant & Emmanuel Bossy, 2024. "Near-field acoustic imaging with a caged bubble," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Ji Hyun Nam & Eric Brandt & Sebastian Bauer & Xiaochun Liu & Marco Renna & Alberto Tosi & Eftychios Sifakis & Andreas Velten, 2021. "Low-latency time-of-flight non-line-of-sight imaging at 5 frames per second," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Sanghyeon Park & Yonghyeon Jo & Minsu Kang & Jin Hee Hong & Sangyoon Ko & Suhyun Kim & Sangjun Park & Hae Chul Park & Sang-Hee Shim & Wonshik Choi, 2023. "Label-free adaptive optics single-molecule localization microscopy for whole zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. YiRang Shin & Matthew R. Lowerison & Yike Wang & Xi Chen & Qi You & Zhijie Dong & Mark A. Anastasio & Pengfei Song, 2024. "Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Flavien Bureau & Justine Robin & Arthur Ber & William Lambert & Mathias Fink & Alexandre Aubry, 2023. "Three-dimensional ultrasound matrix imaging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Xintong Liu & Jianyu Wang & Leping Xiao & Zuoqiang Shi & Xing Fu & Lingyun Qiu, 2023. "Non-line-of-sight imaging with arbitrary illumination and detection pattern," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Cecilia Fahlquist-Hagert & Thomas R. Wittenborn & Ewa Terczyńska-Dyla & Kristian Savstrup Kastberg & Emily Yang & Alysa Nicole Rallistan & Quinton Raymond Markett & Gudrun Winther & Sofie Fonager & La, 2023. "Antigen presentation by B cells enables epitope spreading across an MHC barrier," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    14. Robinson Czajkowski & John Murray-Bruce, 2024. "Two-edge-resolved three-dimensional non-line-of-sight imaging with an ordinary camera," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Filip Ivanovski & Maja Meško & Tina Lebar & Marko Rupnik & Duško Lainšček & Miha Gradišek & Roman Jerala & Mojca Benčina, 2024. "Ultrasound-mediated spatial and temporal control of engineered cells in vivo," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Xosé Luís Deán-Ben & Justine Robin & Daniil Nozdriukhin & Ruiqing Ni & Jim Zhao & Chaim Glück & Jeanne Droux & Juan Sendón-Lago & Zhenyue Chen & Quanyu Zhou & Bruno Weber & Susanne Wegener & Anxo Vida, 2023. "Deep optoacoustic localization microangiography of ischemic stroke in mice," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Jung Min Lee & Young-Woo Pyo & Yeon Jun Kim & Jin Hee Hong & Yonghyeon Jo & Wonshik Choi & Dingchang Lin & Hong-Gyu Park, 2023. "The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Ulysse Najar & Victor Barolle & Paul Balondrade & Mathias Fink & Claude Boccara & Alexandre Aubry, 2024. "Harnessing forward multiple scattering for optical imaging deep inside an opaque medium," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Shensheng Zhao & Jonathan Hartanto & Ritin Joseph & Cheng-Hsun Wu & Yang Zhao & Yun-Sheng Chen, 2023. "Hybrid photoacoustic and fast super-resolution ultrasound imaging," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Jean C. Bikomeye & Andreas M. Beyer & Jamila L. Kwarteng & Kirsten M. M. Beyer, 2022. "Greenspace, Inflammation, Cardiovascular Health, and Cancer: A Review and Conceptual Framework for Greenspace in Cardio-Oncology Research," IJERPH, MDPI, vol. 19(4), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43675-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.