IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47303-7.html
   My bibliography  Save this article

Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging

Author

Listed:
  • Yurou Jia

    (Nanjing University
    National University of Singapore)

  • Suying Zhang

    (Nanjing University)

  • Xuan Zhang

    (Nanjing University)

  • Houyou Long

    (Nanjing University)

  • Caibin Xu

    (Chongqing University)

  • Yechao Bai

    (Nanjing University)

  • Ying Cheng

    (Nanjing University
    Chinese Academy of Sciences)

  • Dajian Wu

    (Nanjing Normal University)

  • Mingxi Deng

    (Chongqing University)

  • Cheng-Wei Qiu

    (National University of Singapore)

  • Xiaojun Liu

    (Nanjing University
    Chinese Academy of Sciences)

Abstract

Ultrasonic imaging is crucial in the fields of biomedical engineering for its deep penetration capabilities and non-ionizing nature. However, traditional techniques heavily rely on impedance differences within objects, resulting in poor contrast when imaging acoustically transparent targets. Here, we propose a compact spatial differentiator for underwater isotropic edge-enhanced imaging, which enhances the imaging contrast without the need for contrast agents or external physical fields. This design incorporates an amplitude meta-grating for linear transmission along the radial direction, combined with a phase meta-grating that utilizes focus and spiral phases with a first-order topological charge. Through theoretical analysis, numerical simulations, and experimental validation, we substantiate the effectiveness of our technique in distinguishing amplitude objects with isotropic edge enhancements. Importantly, this method also enables the accurate detection of both phase objects and artificial biological models. This breakthrough creates new opportunities for applications in medical diagnosis and nondestructive testing.

Suggested Citation

  • Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47303-7
    DOI: 10.1038/s41467-024-47303-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47303-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47303-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Dizeux & Marc Gesnik & Harry Ahnine & Kevin Blaize & Fabrice Arcizet & Serge Picaud & José-Alain Sahel & Thomas Deffieux & Pierre Pouget & Mickael Tanter, 2019. "Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Claudia Errico & Juliette Pierre & Sophie Pezet & Yann Desailly & Zsolt Lenkei & Olivier Couture & Mickael Tanter, 2015. "Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging," Nature, Nature, vol. 527(7579), pages 499-502, November.
    3. Kai Melde & Andrew G. Mark & Tian Qiu & Peer Fischer, 2016. "Holograms for acoustics," Nature, Nature, vol. 537(7621), pages 518-522, September.
    4. Tengfeng Zhu & Cheng Guo & Junyi Huang & Haiwen Wang & Meir Orenstein & Zhichao Ruan & Shanhui Fan, 2021. "Topological optical differentiator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Tengfeng Zhu & Yihan Zhou & Yijie Lou & Hui Ye & Min Qiu & Zhichao Ruan & Shanhui Fan, 2017. "Plasmonic computing of spatial differentiation," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    6. Chu Ma & Seok Kim & Nicholas X. Fang, 2019. "Far-field acoustic subwavelength imaging and edge detection based on spatial filtering and wave vector conversion," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Tengfeng Zhu & Cheng Guo & Junyi Huang & Haiwen Wang & Meir Orenstein & Zhichao Ruan & Shanhui Fan, 2021. "Publisher Correction: Topological optical differentiator," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    8. Zhuochao Wang & Guangwei Hu & Xinwei Wang & Xumin Ding & Kuang Zhang & Haoyu Li & Shah Nawaz Burokur & Qun Wu & Jian Liu & Jiubin Tan & Cheng-Wei Qiu, 2022. "Single-layer spatial analog meta-processor for imaging processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Miguel Molerón & Chiara Daraio, 2015. "Acoustic metamaterial for subwavelength edge detection," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinwei Wang & Hao Wang & Jinlu Wang & Xingsi Liu & Huijie Hao & You Sin Tan & Yilei Zhang & He Zhang & Xiangyan Ding & Weisong Zhao & Yuhang Wang & Zhengang Lu & Jian Liu & Joel K. W. Yang & Jiubin Ta, 2023. "Single-shot isotropic differential interference contrast microscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jérôme Sol & David R. Smith & Philipp Hougne, 2022. "Meta-programmable analog differentiator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Zi-Lan Deng & Meng-Xia Hu & Shanfeng Qiu & Xianfeng Wu & Adam Overvig & Xiangping Li & Andrea Alù, 2024. "Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Yang Liu & Mingchuan Huang & Qiankun Chen & Douguo Zhang, 2022. "Single planar photonic chip with tailored angular transmission for multiple-order analog spatial differentiator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Michele Cotrufo & Akshaj Arora & Sahitya Singh & Andrea Alù, 2023. "Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Ibrahim Tanriover & Sina Abedini Dereshgi & Koray Aydin, 2023. "Metasurface enabled broadband all optical edge detection in visible frequencies," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Ming Deng & Michele Cotrufo & Jian Wang & Jianji Dong & Zhichao Ruan & Andrea Alù & Lin Chen, 2024. "Broadband angular spectrum differentiation using dielectric metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Georgy Ermolaev & Kirill Voronin & Denis G. Baranov & Vasyl Kravets & Gleb Tselikov & Yury Stebunov & Dmitry Yakubovsky & Sergey Novikov & Andrey Vyshnevyy & Arslan Mazitov & Ivan Kruglov & Sergey Zhu, 2022. "Topological phase singularities in atomically thin high-refractive-index materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Biye Xie & Renwen Huang & Shiyin Jia & Zemeng Lin & Junzheng Hu & Yao Jiang & Shaojie Ma & Peng Zhan & Minghui Lu & Zhenlin Wang & Yanfeng Chen & Shuang Zhang, 2023. "Bulk-local-density-of-state correspondence in topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Xosé Luís Deán-Ben & Justine Robin & Daniil Nozdriukhin & Ruiqing Ni & Jim Zhao & Chaim Glück & Jeanne Droux & Juan Sendón-Lago & Zhenyue Chen & Quanyu Zhou & Bruno Weber & Susanne Wegener & Anxo Vida, 2023. "Deep optoacoustic localization microangiography of ischemic stroke in mice," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Matthew Stein & Sam Keller & Yujie Luo & Ognjen Ilic, 2022. "Shaping contactless radiation forces through anomalous acoustic scattering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Zhuochao Wang & Guangwei Hu & Xinwei Wang & Xumin Ding & Kuang Zhang & Haoyu Li & Shah Nawaz Burokur & Qun Wu & Jian Liu & Jiubin Tan & Cheng-Wei Qiu, 2022. "Single-layer spatial analog meta-processor for imaging processing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Chung Il Park & Seungah Choe & Woorim Lee & Wonjae Choi & Miso Kim & Hong Min Seung & Yoon Young Kim, 2023. "Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Zeng Zhang & Misun Hwang & Todd J. Kilbaugh & Anush Sridharan & Joseph Katz, 2022. "Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Dehui Zhang & Dong Xu & Yuhang Li & Yi Luo & Jingtian Hu & Jingxuan Zhou & Yucheng Zhang & Boxuan Zhou & Peiqi Wang & Xurong Li & Bijie Bai & Huaying Ren & Laiyuan Wang & Ao Zhang & Mona Jarrahi & Yu , 2024. "Broadband nonlinear modulation of incoherent light using a transparent optoelectronic neuron array," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. YiRang Shin & Matthew R. Lowerison & Yike Wang & Xi Chen & Qi You & Zhijie Dong & Mark A. Anastasio & Pengfei Song, 2024. "Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47303-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.