IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51620-2.html
   My bibliography  Save this article

Ultrasound-mediated spatial and temporal control of engineered cells in vivo

Author

Listed:
  • Filip Ivanovski

    (National Institute of Chemistry, Hajdrihova 19
    University of Ljubljana, Vrazov trg 2)

  • Maja Meško

    (National Institute of Chemistry, Hajdrihova 19)

  • Tina Lebar

    (National Institute of Chemistry, Hajdrihova 19)

  • Marko Rupnik

    (National Institute of Chemistry, Hajdrihova 19)

  • Duško Lainšček

    (National Institute of Chemistry, Hajdrihova 19)

  • Miha Gradišek

    (University of Ljubljana, Tržaška c. 25)

  • Roman Jerala

    (National Institute of Chemistry, Hajdrihova 19
    Centre of Technology of Gene and Cell Therapy, Hajdrihova 19)

  • Mojca Benčina

    (National Institute of Chemistry, Hajdrihova 19
    Centre of Technology of Gene and Cell Therapy, Hajdrihova 19
    Kongresni trg 12, 1000)

Abstract

Remote regulation of cells in deep tissue remains a significant challenge. Low-intensity pulsed ultrasound offers promise for in vivo therapies due to its non-invasive nature and precise control. This study uses pulsed ultrasound to control calcium influx in mammalian cells and engineers a therapeutic cellular device responsive to acoustic stimulation in deep tissue without overexpressing calcium channels or gas vesicles. Pulsed ultrasound parameters are established to induce calcium influx in HEK293 cells. Additionally, cells are engineered to express a designed calcium-responsive transcription factor controlling the expression of a selected therapeutic gene, constituting a therapeutic cellular device. The engineered sonogenetic system’s functionality is demonstrated in vivo in mice, where an implanted anti-inflammatory cytokine-producing cellular device effectively alleviates acute colitis, as shown by improved colonic morphology and histopathology. This approach provides a powerful tool for precise, localized control of engineered cells in deep tissue, showcasing its potential for targeted therapeutic delivery.

Suggested Citation

  • Filip Ivanovski & Maja Meško & Tina Lebar & Marko Rupnik & Duško Lainšček & Miha Gradišek & Roman Jerala & Mojca Benčina, 2024. "Ultrasound-mediated spatial and temporal control of engineered cells in vivo," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51620-2
    DOI: 10.1038/s41467-024-51620-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51620-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51620-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pei Liu & Josquin Foiret & Yinglin Situ & Nisi Zhang & Aris J. Kare & Bo Wu & Marina N. Raie & Katherine W. Ferrara & Lei S. Qi, 2023. "Sonogenetic control of multiplexed genome regulation and base editing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Claudia Errico & Juliette Pierre & Sophie Pezet & Yann Desailly & Zsolt Lenkei & Olivier Couture & Mickael Tanter, 2015. "Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging," Nature, Nature, vol. 527(7579), pages 499-502, November.
    3. Lizhu Li & Lihui Lu & Yuqi Ren & Guo Tang & Yu Zhao & Xue Cai & Zhao Shi & He Ding & Changbo Liu & Dali Cheng & Yang Xie & Huachun Wang & Xin Fu & Lan Yin & Minmin Luo & Xing Sheng, 2022. "Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Marc Duque & Corinne A. Lee-Kubli & Yusuf Tufail & Uri Magaram & Janki Patel & Ahana Chakraborty & Jose Mendoza Lopez & Eric Edsinger & Aditya Vasan & Rani Shiao & Connor Weiss & James Friend & Sreeka, 2022. "Publisher Correction: Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    5. Yuhao Chen & Meng Du & Zhen Yuan & Zhiyi Chen & Fei Yan, 2022. "Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Marc Duque & Corinne A. Lee-Kubli & Yusuf Tufail & Uri Magaram & Janki Patel & Ahana Chakraborty & Jose Mendoza Lopez & Eric Edsinger & Aditya Vasan & Rani Shiao & Connor Weiss & James Friend & Sreeka, 2022. "Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Mohamad H. Abedi & Michael S. Yao & David R. Mittelstein & Avinoam Bar-Zion & Margaret B. Swift & Audrey Lee-Gosselin & Pierina Barturen-Larrea & Marjorie T. Buss & Mikhail G. Shapiro, 2022. "Ultrasound-controllable engineered bacteria for cancer immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Sangjin Yoo & David R. Mittelstein & Robert C. Hurt & Jerome Lacroix & Mikhail G. Shapiro, 2022. "Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei Liu & Josquin Foiret & Yinglin Situ & Nisi Zhang & Aris J. Kare & Bo Wu & Marina N. Raie & Katherine W. Ferrara & Lei S. Qi, 2023. "Sonogenetic control of multiplexed genome regulation and base editing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yumin Wu & Bo Liu & Yifan Yan & Chuntao Gong & Kaiwei Wang & Nanhui Liu & Yujie Zhu & Maoyi Li & Chunjie Wang & Yizhe Yang & Liangzhu Feng & Zhuang Liu, 2024. "Thermal-responsive activation of engineered bacteria to trigger antitumor immunity post microwave ablation therapy," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Yiqian Wu & Ziliang Huang & Yahan Liu & Peixiang He & Yuxuan Wang & Liyanran Yan & Xinhui Wang & Shanzi Gao & Xintao Zhou & Chi Woo Yoon & Kun Sun & Yinglin Situ & Phuong Ho & Yushun Zeng & Zhou Yuan , 2024. "Ultrasound Control of Genomic Regulatory Toolboxes for Cancer Immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Joseph Rufo & Peiran Zhang & Ruoyu Zhong & Luke P. Lee & Tony Jun Huang, 2022. "A sound approach to advancing healthcare systems: the future of biomedical acoustics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Dorian Bouchet & Olivier Stephan & Benjamin Dollet & Philippe Marmottant & Emmanuel Bossy, 2024. "Near-field acoustic imaging with a caged bubble," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. YiRang Shin & Matthew R. Lowerison & Yike Wang & Xi Chen & Qi You & Zhijie Dong & Mark A. Anastasio & Pengfei Song, 2024. "Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Ben Sorum & Trevor Docter & Vincent Panico & Robert A. Rietmeijer & Stephen G. Brohawn, 2024. "Tension activation of mechanosensitive two-pore domain K+ channels TRAAK, TREK-1, and TREK-2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Jason F. Hou & Md Osman Goni Nayeem & Kian A. Caplan & Evan A. Ruesch & Albit Caban-Murillo & Ernesto Criado-Hidalgo & Sarah B. Ornellas & Brandon Williams & Ayeilla A. Pearce & Huseyin E. Dagdeviren , 2024. "An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Yurou Jia & Suying Zhang & Xuan Zhang & Houyou Long & Caibin Xu & Yechao Bai & Ying Cheng & Dajian Wu & Mingxi Deng & Cheng-Wei Qiu & Xiaojun Liu, 2024. "Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Joshua Kosnoff & Kai Yu & Chang Liu & Bin He, 2024. "Transcranial focused ultrasound to V5 enhances human visual motion brain-computer interface by modulating feature-based attention," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Xosé Luís Deán-Ben & Justine Robin & Daniil Nozdriukhin & Ruiqing Ni & Jim Zhao & Chaim Glück & Jeanne Droux & Juan Sendón-Lago & Zhenyue Chen & Quanyu Zhou & Bruno Weber & Susanne Wegener & Anxo Vida, 2023. "Deep optoacoustic localization microangiography of ischemic stroke in mice," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Shensheng Zhao & Jonathan Hartanto & Ritin Joseph & Cheng-Hsun Wu & Yang Zhao & Yun-Sheng Chen, 2023. "Hybrid photoacoustic and fast super-resolution ultrasound imaging," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Xuandi Hou & Jianing Jing & Yizhou Jiang & Xiaohui Huang & Quanxiang Xian & Ting Lei & Jiejun Zhu & Kin Fung Wong & Xinyi Zhao & Min Su & Danni Li & Langzhou Liu & Zhihai Qiu & Lei Sun, 2024. "Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Mertcan Han & Erdost Yildiz & Ugur Bozuyuk & Asli Aydin & Yan Yu & Aarushi Bhargava & Selcan Karaz & Metin Sitti, 2024. "Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Hyogeun Shin & Min-Ho Nam & Seung Eun Lee & Soo Hyun Yang & Esther Yang & Jin Taek Jung & Hyun Kim & Jiwan Woo & Yakdol Cho & Youngsam Yoon & Il-Joo Cho, 2024. "Transcranial optogenetic brain modulator for precise bimodal neuromodulation in multiple brain regions," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Chung Il Park & Seungah Choe & Woorim Lee & Wonjae Choi & Miso Kim & Hong Min Seung & Yoon Young Kim, 2023. "Ultrasonic barrier-through imaging by Fabry-Perot resonance-tailoring panel," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Pengcheng Sun & Chaochao Li & Can Yang & Mengchun Sun & Hanqing Hou & Yanjun Guan & Jinger Chen & Shangbin Liu & Kuntao Chen & Yuan Ma & Yunxiang Huang & Xiangling Li & Huachun Wang & Liu Wang & Sheng, 2024. "A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Siti N. Yaakub & Tristan A. White & Jamie Roberts & Eleanor Martin & Lennart Verhagen & Charlotte J. Stagg & Stephen Hall & Elsa F. Fouragnan, 2023. "Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Zeng Zhang & Misun Hwang & Todd J. Kilbaugh & Anush Sridharan & Joseph Katz, 2022. "Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51620-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.