IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v563y2018i7733d10.1038_s41586-018-0717-7.html
   My bibliography  Save this article

Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator

Author

Listed:
  • Yiwen Chu

    (Yale University
    Yale University)

  • Prashanta Kharel

    (Yale University
    Yale University)

  • Taekwan Yoon

    (Yale University
    Yale University)

  • Luigi Frunzio

    (Yale University
    Yale University)

  • Peter T. Rakich

    (Yale University
    Yale University)

  • Robert J. Schoelkopf

    (Yale University
    Yale University)

Abstract

Quantum states of mechanical motion can be important resources for quantum information, metrology and studies of fundamental physics. Recent demonstrations of superconducting qubits coupled to acoustic resonators have opened up the possibility of performing quantum operations on macroscale motional modes1–3, which can act as long-lived quantum memories or transducers. In addition, they can potentially be used to test decoherence mechanisms in macroscale objects and other modifications to standard quantum theory4,5. Many of these applications call for the ability to create and characterize complex quantum states, such as states with a well defined phonon number, also known as phonon Fock states. Such capabilities require fast quantum operations and long coherence times of the mechanical mode. Here we demonstrate the controlled generation of multi-phonon Fock states in a macroscale bulk acoustic-wave resonator. We also perform Wigner tomography and state reconstruction to highlight the quantum nature of the prepared states6. These demonstrations are made possible by the long coherence times of our acoustic resonator and our ability to selectively couple a superconducting qubit to individual phonon modes. Our work shows that circuit quantum acoustodynamics7 enables sophisticated quantum control of macroscale mechanical objects and opens up the possibility of using acoustic modes as quantum resources.

Suggested Citation

  • Yiwen Chu & Prashanta Kharel & Taekwan Yoon & Luigi Frunzio & Peter T. Rakich & Robert J. Schoelkopf, 2018. "Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator," Nature, Nature, vol. 563(7733), pages 666-670, November.
  • Handle: RePEc:nat:nature:v:563:y:2018:i:7733:d:10.1038_s41586-018-0717-7
    DOI: 10.1038/s41586-018-0717-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0717-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0717-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Shao & Vikrant J. Gokhale & Bo Peng & Penghui Song & Jingjie Cheng & Justin Kuo & Amit Lal & Wen-Ming Zhang & Jason J. Gorman, 2022. "Femtometer-amplitude imaging of coherent super high frequency vibrations in micromechanical resonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Agnetta Y. Cleland & E. Alex Wollack & Amir H. Safavi-Naeini, 2024. "Studying phonon coherence with a quantum sensor," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Daehun Lee & Shahin Jahanbani & Jack Kramer & Ruochen Lu & Keji Lai, 2023. "Nanoscale imaging of super-high-frequency microelectromechanical resonators with femtometer sensitivity," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:563:y:2018:i:7733:d:10.1038_s41586-018-0717-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.