IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v414y2001i6862d10.1038_35106500.html
   My bibliography  Save this article

Long-distance quantum communication with atomic ensembles and linear optics

Author

Listed:
  • L.-M. Duan

    (Institut für Theoretische Physik, Universität Innsbruck
    Laboratory of Quantum Communication and Computation, USTC)

  • M. D. Lukin

    (Harvard University)

  • J. I. Cirac

    (Institut für Theoretische Physik, Universität Innsbruck)

  • P. Zoller

    (Institut für Theoretische Physik, Universität Innsbruck)

Abstract

Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

Suggested Citation

  • L.-M. Duan & M. D. Lukin & J. I. Cirac & P. Zoller, 2001. "Long-distance quantum communication with atomic ensembles and linear optics," Nature, Nature, vol. 414(6862), pages 413-418, November.
  • Handle: RePEc:nat:nature:v:414:y:2001:i:6862:d:10.1038_35106500
    DOI: 10.1038/35106500
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35106500
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35106500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Zhang & Jixuan Shi & Yibo Liang & Yuedong Sun & Yukai Wu & Luming Duan & Yunfei Pu, 2024. "Fast delivery of heralded atom-photon quantum correlation over 12 km fiber through multiplexing enhancement," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Tulio Brito Brasil & Valeriy Novikov & Hugo Kerdoncuff & Mikael Lassen & Eugene S. Polzik, 2022. "Two-colour high-purity Einstein-Podolsky-Rosen photonic state," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    3. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Pei Zeng & Hongyi Zhou & Weijie Wu & Xiongfeng Ma, 2022. "Mode-pairing quantum key distribution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Lai Zhou & Jinping Lin & Yumang Jing & Zhiliang Yuan, 2023. "Twin-field quantum key distribution without optical frequency dissemination," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Cao, Zhuo-Liang & Yang, Ming, 2004. "Probabilistic teleportation of unknown atomic state using W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 132-140.
    9. Yang, Ming & Cao, Zhuo-Liang, 2004. "Entanglement distillation for W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 141-148.
    10. Valeria Vento & Santiago Tarrago Velez & Anna Pogrebna & Christophe Galland, 2023. "Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    12. Daniel Assumpcao & Dylan Renaud & Aida Baradari & Beibei Zeng & Chawina De-Eknamkul & C. J. Xin & Amirhassan Shams-Ansari & David Barton & Bartholomeus Machielse & Marko Loncar, 2024. "A thin film lithium niobate near-infrared platform for multiplexing quantum nodes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Terence Blésin & Wil Kao & Anat Siddharth & Rui N. Wang & Alaina Attanasio & Hao Tian & Sunil A. Bhave & Tobias J. Kippenberg, 2024. "Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:414:y:2001:i:6862:d:10.1038_35106500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.