IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16996-x.html
   My bibliography  Save this article

On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4

Author

Listed:
  • John G. Bartholomew

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology
    The University of Sydney)

  • Jake Rochman

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Tian Xie

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Jonathan M. Kindem

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology
    University of Colorado and NIST)

  • Andrei Ruskuc

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Ioana Craiciu

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Mi Lei

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

  • Andrei Faraon

    (California Institute of Technology
    California Institute of Technology
    California Institute of Technology)

Abstract

Optical networks that distribute entanglement among various quantum systems will form a powerful framework for quantum science but are yet to interface with leading quantum hardware such as superconducting qubits. Consequently, these systems remain isolated because microwave links at room temperature are noisy and lossy. Building long distance connectivity requires interfaces that map quantum information between microwave and optical fields. While preliminary microwave-to-optical transducers have been realized, developing efficient, low-noise devices that match superconducting qubit frequencies (gigahertz) and bandwidths (10 kilohertz – 1 megahertz) remains a challenge. Here we demonstrate a proof-of-concept on-chip transducer using trivalent ytterbium-171 ions in yttrium orthovanadate coupled to a nanophotonic waveguide and a microwave transmission line. The device′s miniaturization, material, and zero-magnetic-field operation are important advances for rare-earth ion magneto-optical devices. Further integration with high quality factor microwave and optical resonators will enable efficient transduction and create opportunities toward multi-platform quantum networks.

Suggested Citation

  • John G. Bartholomew & Jake Rochman & Tian Xie & Jonathan M. Kindem & Andrei Ruskuc & Ioana Craiciu & Mi Lei & Andrei Faraon, 2020. "On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16996-x
    DOI: 10.1038/s41467-020-16996-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16996-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16996-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Likai Yang & Sihao Wang & Mohan Shen & Jiacheng Xie & Hong X. Tang, 2023. "Controlling single rare earth ion emission in an electro-optical nanocavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16996-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.