A library of atomically thin metal chalcogenides
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-018-0008-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Manzhang Xu & Hongjia Ji & Lu Zheng & Weiwei Li & Jing Wang & Hanxin Wang & Lei Luo & Qianbo Lu & Xuetao Gan & Zheng Liu & Xuewen Wang & Wei Huang, 2024. "Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Yonggang Zuo & Can Liu & Liping Ding & Ruixi Qiao & Jinpeng Tian & Chang Liu & Qinghe Wang & Guodong Xue & Yilong You & Quanlin Guo & Jinhuan Wang & Ying Fu & Kehai Liu & Xu Zhou & Hao Hong & Muhong W, 2022. "Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
- Zijing Zhao & Zhi Fang & Xiaocang Han & Shiqi Yang & Cong Zhou & Yi Zeng & Biao Zhang & Wei Li & Zhan Wang & Ying Zhang & Jian Zhou & Jiadong Zhou & Yu Ye & Xinmei Hou & Xiaoxu Zhao & Song Gao & Yangl, 2023. "A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Xuezhen Feng & Renji Zheng & Caiyan Gao & Wenfei Wei & Jiangguli Peng & Ranhao Wang & Songhe Yang & Wensong Zou & Xiaoyong Wu & Yongfei Ji & Hong Chen, 2022. "Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Biao Qin & Muhammad Zeeshan Saeed & Qiuqiu Li & Manli Zhu & Ya Feng & Ziqi Zhou & Jingzhi Fang & Mongur Hossain & Zucheng Zhang & Yucheng Zhou & Ying Huangfu & Rong Song & Jingmei Tang & Bailing Li & , 2023. "General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Rui Wu & Jie Xu & Chuan-Lin Zhao & Xiao-Zhi Su & Xiao-Long Zhang & Ya-Rong Zheng & Feng-Yi Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Jun Luo & Wei-Xue Li & Min-Rui Gao & Shu-Hong Yu, 2023. "Dopant triggered atomic configuration activates water splitting to hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Yecun Wu & Jingyang Wang & Yanbin Li & Jiawei Zhou & Bai Yang Wang & Ankun Yang & Lin-Wang Wang & Harold Y. Hwang & Yi Cui, 2022. "Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Ruiqing Cheng & Lei Yin & Yao Wen & Baoxing Zhai & Yuzheng Guo & Zhaofu Zhang & Weitu Liao & Wenqi Xiong & Hao Wang & Shengjun Yuan & Jian Jiang & Chuansheng Liu & Jun He, 2022. "Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Seunguk Song & Aram Yoon & Jong-Kwon Ha & Jihoon Yang & Sora Jang & Chloe Leblanc & Jaewon Wang & Yeoseon Sim & Deep Jariwala & Seung Kyu Min & Zonghoon Lee & Soon-Yong Kwon, 2022. "Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Qianqian He & Kunpeng Si & Zian Xu & Xingguo Wang & Chunqiao Jin & Yahan Yang & Juntian Wei & Lingjia Meng & Pengbo Zhai & Peng Zhang & Peizhe Tang & Yongji Gong, 2024. "Direct synthesis of controllable ultrathin heteroatoms-intercalated 2D layered materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:556:y:2018:i:7701:d:10.1038_s41586-018-0008-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.