IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29671-0.html
   My bibliography  Save this article

Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide

Author

Listed:
  • Xuezhen Feng

    (State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology)

  • Renji Zheng

    (State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology)

  • Caiyan Gao

    (Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology)

  • Wenfei Wei

    (State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology)

  • Jiangguli Peng

    (State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology)

  • Ranhao Wang

    (State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology)

  • Songhe Yang

    (State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology)

  • Wensong Zou

    (State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology)

  • Xiaoyong Wu

    (Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology)

  • Yongfei Ji

    (School of Chemistry and Chemical Engineering, Guangzhou University)

  • Hong Chen

    (State Environmental Protection Key Laboratory of Integrated Surface Water Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology)

Abstract

Ultrathin two-dimensional (2D) metal oxyhalides exhibit outstanding photocatalytic properties with unique electronic and interfacial structures. Compared with monometallic oxyhalides, bimetallic oxyhalides are less explored. In this work, we have developed a novel top-down wet-chemistry desalination approach to remove the alkali-halide salt layer within the complicated precursor bulk structural matrix Pb0.6Bi1.4Cs0.6O2Cl2, and successfully fabricate a new 2D ultrathin bimetallic oxyhalide Pb0.6Bi1.4O2Cl1.4. The unlocked larger surface area, rich bimetallic active sites, and faster carrier dynamics within Pb0.6Bi1.4O2Cl1.4 layers significantly enhance the photocatalytic efficiency for atmospheric CO2 reduction. It outperforms the corresponding parental matrix phase and other state-of-the-art bismuth-based monometallic oxyhalides photocatalysts. This work reports a top-down desalination strategy to engineering ultrathin bimetallic 2D material for photocatalytic atmospheric CO2 reduction, which sheds light on further constructing other ultrathin 2D catalysts for environmental and energy applications from similar complicate structure matrixes.

Suggested Citation

  • Xuezhen Feng & Renji Zheng & Caiyan Gao & Wenfei Wei & Jiangguli Peng & Ranhao Wang & Songhe Yang & Wensong Zou & Xiaoyong Wu & Yongfei Ji & Hong Chen, 2022. "Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29671-0
    DOI: 10.1038/s41467-022-29671-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29671-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29671-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaoliang Tan & Hua Zhang, 2015. "Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    2. Jie Li & Guangming Zhan & Ying Yu & Lizhi Zhang, 2016. "Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    3. Jiadong Zhou & Junhao Lin & Xiangwei Huang & Yao Zhou & Yu Chen & Juan Xia & Hong Wang & Yu Xie & Huimei Yu & Jincheng Lei & Di Wu & Fucai Liu & Qundong Fu & Qingsheng Zeng & Chuang-Han Hsu & Changli , 2018. "A library of atomically thin metal chalcogenides," Nature, Nature, vol. 556(7701), pages 355-359, April.
    4. Jun Di & Chao Chen & Shi-Ze Yang & Shuangming Chen & Meilin Duan & Jun Xiong & Chao Zhu & Ran Long & Wei Hao & Zhen Chi & Hailong Chen & Yu-Xiang Weng & Jiexiang Xia & Li Song & Shuzhou Li & Huaming L, 2019. "Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanbiao Shi & Jie Li & Chengliang Mao & Song Liu & Xiaobing Wang & Xiufan Liu & Shengxi Zhao & Xiao Liu & Yanqiang Huang & Lizhi Zhang, 2021. "Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Biao Qin & Muhammad Zeeshan Saeed & Qiuqiu Li & Manli Zhu & Ya Feng & Ziqi Zhou & Jingzhi Fang & Mongur Hossain & Zucheng Zhang & Yucheng Zhou & Ying Huangfu & Rong Song & Jingmei Tang & Bailing Li & , 2023. "General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Li, Zhenzi & Wang, Shijie & Wu, Jiaxing & Zhou, Wei, 2022. "Recent progress in defective TiO2 photocatalysts for energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yecun Wu & Jingyang Wang & Yanbin Li & Jiawei Zhou & Bai Yang Wang & Ankun Yang & Lin-Wang Wang & Harold Y. Hwang & Yi Cui, 2022. "Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Yonggang Zuo & Can Liu & Liping Ding & Ruixi Qiao & Jinpeng Tian & Chang Liu & Qinghe Wang & Guodong Xue & Yilong You & Quanlin Guo & Jinhuan Wang & Ying Fu & Kehai Liu & Xu Zhou & Hao Hong & Muhong W, 2022. "Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Rui Wu & Jie Xu & Chuan-Lin Zhao & Xiao-Zhi Su & Xiao-Long Zhang & Ya-Rong Zheng & Feng-Yi Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Jun Luo & Wei-Xue Li & Min-Rui Gao & Shu-Hong Yu, 2023. "Dopant triggered atomic configuration activates water splitting to hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Ruiqing Cheng & Lei Yin & Yao Wen & Baoxing Zhai & Yuzheng Guo & Zhaofu Zhang & Weitu Liao & Wenqi Xiong & Hao Wang & Shengjun Yuan & Jian Jiang & Chuansheng Liu & Jun He, 2022. "Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Seunguk Song & Aram Yoon & Jong-Kwon Ha & Jihoon Yang & Sora Jang & Chloe Leblanc & Jaewon Wang & Yeoseon Sim & Deep Jariwala & Seung Kyu Min & Zonghoon Lee & Soon-Yong Kwon, 2022. "Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Peng, Wanxi & Chuong Nguyen, Thi Hong & Nguyen, Dang Le Tri & Wang, Ting & Van Thi Tran, Thi & Le, Trung Hieu & Le, Hai Khoa & Grace, Andrews Nirmala & Singh, Pardeep & Raizadaa, Pankaj & Nguyen Dinh,, 2021. "A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Yan Guo & Qixin Zhou & Jun Nan & Wenxin Shi & Fuyi Cui & Yongfa Zhu, 2022. "Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Zhou, Weiming & Wu, Yiting & Huang, Hongqiang & Zhang, Mingxin & Sun, Xuhui & Wang, Zequn & Zhao, Fei & zhang, Houyu & Xie, Tengfeng & An, Meng & Wang, Liwei & Yuan, Zhanhui, 2022. "2D lamellar membrane with nanochannels synthesized by bottom-up assembly approach for the superior photocatalytic hydrogen evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Zijing Zhao & Zhi Fang & Xiaocang Han & Shiqi Yang & Cong Zhou & Yi Zeng & Biao Zhang & Wei Li & Zhan Wang & Ying Zhang & Jian Zhou & Jiadong Zhou & Yu Ye & Xinmei Hou & Xiaoxu Zhao & Song Gao & Yangl, 2023. "A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Manzhang Xu & Hongjia Ji & Lu Zheng & Weiwei Li & Jing Wang & Hanxin Wang & Lei Luo & Qianbo Lu & Xuetao Gan & Zheng Liu & Xuewen Wang & Wei Huang, 2024. "Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29671-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.