IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35983-6.html
   My bibliography  Save this article

General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials

Author

Listed:
  • Biao Qin

    (College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University)

  • Muhammad Zeeshan Saeed

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Qiuqiu Li

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Manli Zhu

    (College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University)

  • Ya Feng

    (College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University)

  • Ziqi Zhou

    (Institute of Semiconductors, Chinese Academy of Sciences)

  • Jingzhi Fang

    (Institute of Semiconductors, Chinese Academy of Sciences)

  • Mongur Hossain

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Zucheng Zhang

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Yucheng Zhou

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Ying Huangfu

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Rong Song

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Jingmei Tang

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Bailing Li

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Jialing Liu

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Di Wang

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Kun He

    (College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University)

  • Hongmei Zhang

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Ruixia Wu

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Bei Zhao

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Jia Li

    (College of Chemistry and Chemical Engineering, Hunan University)

  • Lei Liao

    (College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University)

  • Zhongming Wei

    (Institute of Semiconductors, Chinese Academy of Sciences)

  • Bo Li

    (College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University
    Shenzhen Research Institute of Hunan University)

  • Xiangfeng Duan

    (University of California)

  • Xidong Duan

    (College of Chemistry and Chemical Engineering, Hunan University)

Abstract

Most of the current methods for the synthesis of two-dimensional materials (2DMs) require temperatures not compatible with traditional back-end-of-line (BEOL) processes in semiconductor industry (450 °C). Here, we report a general BiOCl-assisted chemical vapor deposition (CVD) approach for the low-temperature synthesis of 27 ultrathin 2DMs. In particular, by mixing BiOCl with selected metal powders to produce volatile intermediates, we show that ultrathin 2DMs can be produced at 280–500 °C, which are ~200–300 °C lower than the temperatures required for salt-assisted CVD processes. In-depth characterizations and theoretical calculations reveal the low-temperature processes promoting 2D growth and the oxygen-inhibited synthetic mechanism ensuring the formation of ultrathin nonlayered 2DMs. We demonstrate that the resulting 2DMs exhibit electrical, magnetic and optoelectronic properties comparable to those of 2DMs grown at much higher temperatures. The general low-temperature preparation of ultrathin 2DMs defines a rich material platform for exploring exotic physics and facile BEOL integration in semiconductor industry.

Suggested Citation

  • Biao Qin & Muhammad Zeeshan Saeed & Qiuqiu Li & Manli Zhu & Ya Feng & Ziqi Zhou & Jingzhi Fang & Mongur Hossain & Zucheng Zhang & Yucheng Zhou & Ying Huangfu & Rong Song & Jingmei Tang & Bailing Li & , 2023. "General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35983-6
    DOI: 10.1038/s41467-023-35983-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35983-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35983-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Ohno & D. Chiba & F. Matsukura & T. Omiya & E. Abe & T. Dietl & Y. Ohno & K. Ohtani, 2000. "Electric-field control of ferromagnetism," Nature, Nature, vol. 408(6815), pages 944-946, December.
    2. Jiadong Zhou & Junhao Lin & Xiangwei Huang & Yao Zhou & Yu Chen & Juan Xia & Hong Wang & Yu Xie & Huimei Yu & Jincheng Lei & Di Wu & Fucai Liu & Qundong Fu & Qingsheng Zeng & Chuang-Han Hsu & Changli , 2018. "A library of atomically thin metal chalcogenides," Nature, Nature, vol. 556(7701), pages 355-359, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanshan Hong & Maria Vincenzo & Alberto Tiraferri & Erica Bertozzi & Radosław Górecki & Bambar Davaasuren & Xiang Li & Suzana P. Nunes, 2024. "Precision ion separation via self-assembled channels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yecun Wu & Jingyang Wang & Yanbin Li & Jiawei Zhou & Bai Yang Wang & Ankun Yang & Lin-Wang Wang & Harold Y. Hwang & Yi Cui, 2022. "Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yonggang Zuo & Can Liu & Liping Ding & Ruixi Qiao & Jinpeng Tian & Chang Liu & Qinghe Wang & Guodong Xue & Yilong You & Quanlin Guo & Jinhuan Wang & Ying Fu & Kehai Liu & Xu Zhou & Hao Hong & Muhong W, 2022. "Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Rui Wu & Jie Xu & Chuan-Lin Zhao & Xiao-Zhi Su & Xiao-Long Zhang & Ya-Rong Zheng & Feng-Yi Yang & Xu-Sheng Zheng & Jun-Fa Zhu & Jun Luo & Wei-Xue Li & Min-Rui Gao & Shu-Hong Yu, 2023. "Dopant triggered atomic configuration activates water splitting to hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Ruiqing Cheng & Lei Yin & Yao Wen & Baoxing Zhai & Yuzheng Guo & Zhaofu Zhang & Weitu Liao & Wenqi Xiong & Hao Wang & Shengjun Yuan & Jian Jiang & Chuansheng Liu & Jun He, 2022. "Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Jong-Guk Choi & Jaehyeon Park & Min-Gu Kang & Doyoon Kim & Jae-Sung Rieh & Kyung-Jin Lee & Kab-Jin Kim & Byong-Guk Park, 2022. "Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Xuezhen Feng & Renji Zheng & Caiyan Gao & Wenfei Wei & Jiangguli Peng & Ranhao Wang & Songhe Yang & Wensong Zou & Xiaoyong Wu & Yongfei Ji & Hong Chen, 2022. "Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Seunguk Song & Aram Yoon & Jong-Kwon Ha & Jihoon Yang & Sora Jang & Chloe Leblanc & Jaewon Wang & Yeoseon Sim & Deep Jariwala & Seung Kyu Min & Zonghoon Lee & Soon-Yong Kwon, 2022. "Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Zijing Zhao & Zhi Fang & Xiaocang Han & Shiqi Yang & Cong Zhou & Yi Zeng & Biao Zhang & Wei Li & Zhan Wang & Ying Zhang & Jian Zhou & Jiadong Zhou & Yu Ye & Xinmei Hou & Xiaoxu Zhao & Song Gao & Yangl, 2023. "A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Manzhang Xu & Hongjia Ji & Lu Zheng & Weiwei Li & Jing Wang & Hanxin Wang & Lei Luo & Qianbo Lu & Xuetao Gan & Zheng Liu & Xuewen Wang & Wei Huang, 2024. "Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35983-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.