Targeting Prospective Customers: Robustness of Machine-Learning Methods to Typical Data Challenges
Author
Abstract
Suggested Citation
DOI: 10.1287/mnsc.2019.3308
Download full text from publisher
References listed on IDEAS
- Foekens, Eijte W. & Leeflang, Peter S. H. & Wittink, Dick R., 1994. "A comparison and an exploration of the forecasting accuracy of a loglinear model at different levels of aggregation," International Journal of Forecasting, Elsevier, vol. 10(2), pages 245-261, September.
- Andrews, Rick L. & Currim, Imran S. & Leeflang, Peter S. H., 2011. "A Comparison of Sales Response Predictions From Demand Models Applied to Store-Level versus Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 319-326.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Prasad A. Naik & Murali K. Mantrala & Alan G. Sawyer, 1998. "Planning Media Schedules in the Presence of Dynamic Advertising Quality," Marketing Science, INFORMS, vol. 17(3), pages 214-235.
- Gitae Kim & Bongsug Chae & David Olson, 2013. "A support vector machine (SVM) approach to imbalanced datasets of customer responses: comparison with other customer response models," Service Business, Springer;Pan-Pacific Business Association, vol. 7(1), pages 167-182, March.
- Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
- Aigner, Dennis J & Goldfeld, Stephen M, 1974. "Estimation and Prediction from Aggregate Data when Aggregates are Measured More Accurately than Their Components," Econometrica, Econometric Society, vol. 42(1), pages 113-134, January.
- McCarty, John A. & Hastak, Manoj, 2007. "Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression," Journal of Business Research, Elsevier, vol. 60(6), pages 656-662, June.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
- Edwards, John B & Orcutt, Guy H, 1969. "Should Aggregation Prior to Estimation Be the Rule?," The Review of Economics and Statistics, MIT Press, vol. 51(4), pages 409-420, November.
- Aigner, D.J. & Goldfeld, S.M., 1974. "Estimation and prediction from aggregate data when aggregates are measured more accurately than their components," LIDAM Reprints CORE 190, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Aradhna Krishna, 1992. "The Normative Impact of Consumer Price Expectations for Multiple Brands on Consumer Purchase Behavior," Marketing Science, INFORMS, vol. 11(3), pages 266-286.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Pesaran, M Hashem & Pierse, Richard G & Kumar, Mohan S, 1989.
"Econometric Analysis of Aggregation in the Context of Linear Prediction Models,"
Econometrica, Econometric Society, vol. 57(4), pages 861-888, July.
- M. H. Pesaran & R. G. Pierse & M. S. Kumar, 1988. "Econometric Analysis of Aggregation in the Context of Linear Prediction Models," UCLA Economics Working Papers 485, UCLA Department of Economics.
- Aradhna Krishna, 1994. "The Impact of Dealing Patterns on Purchase Behavior," Marketing Science, INFORMS, vol. 13(4), pages 351-373.
- David Olson & Qing Cao & Ching Gu & Donhee Lee, 2009. "Comparison of customer response models," Service Business, Springer;Pan-Pacific Business Association, vol. 3(2), pages 117-130, June.
- Vibhanshu Abhishek & Kartik Hosanagar & Peter S. Fader, 2015. "Aggregation Bias in Sponsored Search Data: The Curse and the Cure," Marketing Science, INFORMS, vol. 34(1), pages 59-77, January.
- Thompson, Patrick A & Noordewier, Thomas, 1992. "Estimating the Effects of Consumer Incentive Programs on Domestic Automobile Sales," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 409-417, October.
- Rick L. Andrews & Imran S. Currim & Peter S. H. Leeflang, 2011. "A Comparison of Sales Response Predictions From Demand Models Applied to Store-Level versus Panel Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 319-326, April.
- Aigner, Dennis J & Goldfeld, Stephen M, 1973. "Simulation and Aggregation: A Reconsideration," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 114-118, February.
- Peter Hall, 2002. "Permutation tests for equality of distributions in high-dimensional settings," Biometrika, Biometrika Trust, vol. 89(2), pages 359-374, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wayne Xinwei Wan & Thies Lindenthal, 2023. "Testing machine learning systems in real estate," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(3), pages 754-778, May.
- Saravanan Thirumuruganathan & Soon-gyo Jung & Dianne Ramirez Robillos & Joni Salminen & Bernard J. Jansen, 2021. "Forecasting the nearly unforecastable: why aren’t airline bookings adhering to the prediction algorithm?," Electronic Commerce Research, Springer, vol. 21(1), pages 73-100, March.
- Maria De‐Arteaga & Stefan Feuerriegel & Maytal Saar‐Tsechansky, 2022. "Algorithmic fairness in business analytics: Directions for research and practice," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3749-3770, October.
- Günter J. Hitsch & Sanjog Misra & Walter W. Zhang, 2024. "Heterogeneous treatment effects and optimal targeting policy evaluation," Quantitative Marketing and Economics (QME), Springer, vol. 22(2), pages 115-168, June.
- Zenan Zhou & Xiang Wan, 2022. "Does the Sharing Economy Technology Disrupt Incumbents? Exploring the Influences of Mobile Digital Freight Matching Platforms on Road Freight Logistics Firms," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 117-137, January.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021.
"Optimal Targeting in Fundraising: A Machine-Learning Approach,"
Economics working papers
2021-08, Department of Economics, Johannes Kepler University Linz, Austria.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Machine-Learning Approach," CESifo Working Paper Series 9037, CESifo.
- Wan, Wayne Xinwei & Lindenthal, Thies, 2022. "Towards accountability in machine learning applications: A system-testing approach," ZEW Discussion Papers 22-001, ZEW - Leibniz Centre for European Economic Research.
- Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2023. "Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 158-177, January.
- Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eric T. Anderson & Duncan I. Simester, 2004. "Long-Run Effects of Promotion Depth on New Versus Established Customers: Three Field Studies," Marketing Science, INFORMS, vol. 23(1), pages 4-20, February.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
- Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
- Huber Martin & Wüthrich Kaspar, 2019.
"Local Average and Quantile Treatment Effects Under Endogeneity: A Review,"
Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
- Huber, Martin & Wüthrich, Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," University of California at San Diego, Economics Working Paper Series qt4j29d8sc, Department of Economics, UC San Diego.
- Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011.
"Forecasting (aggregate) demand for US commercial air travel,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941.
- Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941, July.
- Giacomini, Raffaella & Granger, Clive W. J., 2004.
"Aggregation of space-time processes,"
Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
- Giacomini, Raffaella & Granger, Clive W.J., 2001. "Aggregationn of Space-Time Processes," University of California at San Diego, Economics Working Paper Series qt77f76455, Department of Economics, UC San Diego.
- Raffaella Giacomini & Clive W.J. Granger, 2002. "Aggregation of Space-Time Processes," Boston College Working Papers in Economics 582, Boston College Department of Economics.
- Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022.
"The effect of COVID certificates on vaccine uptake, health outcomes, and the economy,"
Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Miquel Oliu-Barton & Bary S R Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B Wolff, 2022. "The Effect of COVID Certificates on Vaccine Uptake, Health Outcomes, and the Economy," SciencePo Working papers Main hal-03813557, HAL.
- Miquel Oliu-Barton & Bary S R Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B Wolff, 2022. "The Effect of COVID Certificates on Vaccine Uptake, Health Outcomes, and the Economy," PSE-Ecole d'économie de Paris (Postprint) hal-03813557, HAL.
- Miquel Oliu-Barton & Bary S R Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B Wolff, 2022. "The Effect of COVID Certificates on Vaccine Uptake, Health Outcomes, and the Economy," Post-Print hal-03813557, HAL.
- Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
- Elliott Ash & Daniel L. Chen & Sergio Galletta, 2022.
"Measuring Judicial Sentiment: Methods and Application to US Circuit Courts,"
Economica, London School of Economics and Political Science, vol. 89(354), pages 362-376, April.
- Elliott Ash & Daniel L. Chen & Sergio Galletta, 2022. "Measuring Judicial Sentiment: Methods and Application to US Circuit Courts," Post-Print hal-03597819, HAL.
- Pradhi Aggarwal & Alec Brandon & Ariel Goldszmidt & Justin Holz & John List & Ian Muir & Gregory Sun & Thomas Yu, 2022. "High-frequency location data shows that race affects the likelihood of being stopped and fined for speeding," Natural Field Experiments 00764, The Field Experiments Website.
- Songul Cinaroglu, 2020. "Modelling unbalanced catastrophic health expenditure data by using machine‐learning methods," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 168-181, October.
- Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
- Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389, CPB Netherlands Bureau for Economic Policy Analysis.
- Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
- Jonas Metzger, 2022. "Adversarial Estimators," Papers 2204.10495, arXiv.org, revised Jun 2022.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022.
"Unconditional quantile regression with high‐dimensional data,"
Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2020. "Unconditional Quantile Regression with High Dimensional Data," Papers 2007.13659, arXiv.org, revised Feb 2022.
- S Klaassen & J Kueck & M Spindler & V Chernozhukov, 2023.
"Uniform inference in high-dimensional Gaussian graphical models,"
Biometrika, Biometrika Trust, vol. 110(1), pages 51-68.
- Sven Klaassen & Jannis Kuck & Martin Spindler & Victor Chernozhukov, 2018. "Uniform Inference in High-Dimensional Gaussian Graphical Models," Papers 1808.10532, arXiv.org, revised Dec 2018.
- Sven Klaassen & Jannis Kück & Martin Spindler & Victor Chernozhukov, 2019. "Uniform inference in high-dimensional Gaussian graphical models," CeMMAP working papers CWP29/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021.
"Long Story Short: Omitted Variable Bias in Causal Machine Learning,"
Papers
2112.13398, arXiv.org, revised May 2024.
- Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2022. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," NBER Working Papers 30302, National Bureau of Economic Research, Inc.
More about this item
Keywords
targeting; machine learning; field experiments; covariate shift; concept shift;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:66:y:2020:i:6:p:2495-2522. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.