IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v29i2y2011p319-326.html
   My bibliography  Save this article

A Comparison of Sales Response Predictions From Demand Models Applied to Store-Level versus Panel Data

Author

Listed:
  • Andrews, Rick L.
  • Currim, Imran S.
  • Leeflang, Peter S. H.

Abstract

No abstract is available for this item.

Suggested Citation

  • Andrews, Rick L. & Currim, Imran S. & Leeflang, Peter S. H., 2011. "A Comparison of Sales Response Predictions From Demand Models Applied to Store-Level versus Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 319-326.
  • Handle: RePEc:bes:jnlbes:v:29:i:2:y:2011:p:319-326
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jbes.2010.07225
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alantari, Huwail J. & Currim, Imran S. & Deng, Yiting & Singh, Sameer, 2022. "An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews," International Journal of Research in Marketing, Elsevier, vol. 39(1), pages 1-19.
    2. Almohri, Haidar & Chinnam, Ratna Babu & Colosimo, Mark, 2019. "Data-driven analytics for benchmarking and optimizing the performance of automotive dealerships," International Journal of Production Economics, Elsevier, vol. 213(C), pages 69-80.
    3. Yu Xia & Ali Arian & Sriram Narayanamoorthy & Joshua Mabry, 2023. "RetailSynth: Synthetic Data Generation for Retail AI Systems Evaluation," Papers 2312.14095, arXiv.org.
    4. Choi, Sunhee & Duhan, Dale F. & Dass, Mayukh, 2023. "The influence of corporate social responsibility appeals (CSRAs) on product sales: Which appeal types perform better?," Journal of Retailing, Elsevier, vol. 99(1), pages 115-135.
    5. Duncan Simester & Artem Timoshenko & Spyros I. Zoumpoulis, 2020. "Targeting Prospective Customers: Robustness of Machine-Learning Methods to Typical Data Challenges," Management Science, INFORMS, vol. 66(6), pages 2495-2522, June.
    6. Leeflang, Peter, 2011. "Paving the way for “distinguished marketing”," International Journal of Research in Marketing, Elsevier, vol. 28(2), pages 76-88.
    7. Cuellar, Steven S. & Brunamonti, Marco, 2014. "Retail channel price discrimination," Journal of Retailing and Consumer Services, Elsevier, vol. 21(3), pages 339-346.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:29:i:2:y:2011:p:319-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.