IDEAS home Printed from https://ideas.repec.org/a/spr/svcbiz/v7y2013i1p167-182.html
   My bibliography  Save this article

A support vector machine (SVM) approach to imbalanced datasets of customer responses: comparison with other customer response models

Author

Listed:
  • Gitae Kim
  • Bongsug Chae
  • David Olson

Abstract

Customer response is a crucial aspect of service business. The ability to accurately predict which customer profiles are productive has proven invaluable in customer relationship management. An area that has received little attention in the literature on direct marketing is the class imbalance problem (the very low response rate). We propose a customer response predictive model approach combining recency, frequency, and monetary variables and support vector machine analysis. We have identified three sets of direct marketing data with a different degree of class imbalance (little, moderate, high) and used random undersampling method to reduce the degree of the imbalance problem. We report the empirical results in terms of gain values and prediction accuracy and the impact of random undersampling on customer response model performance. We also discuss these empirical results with the findings of previous studies and the implications for industry practice and future research. Copyright Springer-Verlag 2013

Suggested Citation

  • Gitae Kim & Bongsug Chae & David Olson, 2013. "A support vector machine (SVM) approach to imbalanced datasets of customer responses: comparison with other customer response models," Service Business, Springer;Pan-Pacific Business Association, vol. 7(1), pages 167-182, March.
  • Handle: RePEc:spr:svcbiz:v:7:y:2013:i:1:p:167-182
    DOI: 10.1007/s11628-012-0147-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11628-012-0147-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11628-012-0147-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    2. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(5), pages 687-698, October.
    3. David L. Olson & Dursun Delen, 2008. "Advanced Data Mining Techniques," Springer Books, Springer, number 978-3-540-76917-0, June.
    4. McCarty, John A. & Hastak, Manoj, 2007. "Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression," Journal of Business Research, Elsevier, vol. 60(6), pages 656-662, June.
    5. David L. Olson, 2007. "Data mining in business services," Service Business, Springer;Pan-Pacific Business Association, vol. 1(3), pages 181-193, September.
    6. Verhaert, Griet A. & Van den Poel, Dirk, 2011. "Empathy as added value in predicting donation behavior," Journal of Business Research, Elsevier, vol. 64(12), pages 1288-1295.
    7. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(3), pages 381-386, June.
    8. David Olson & Qing Cao & Ching Gu & Donhee Lee, 2009. "Comparison of customer response models," Service Business, Springer;Pan-Pacific Business Association, vol. 3(2), pages 117-130, June.
    9. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
    10. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(4), pages 525-537, August.
    11. Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
    12. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(2), pages 285-292, April.
    13. Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
    14. Joo, Young-Hyuck & Kim, Yunsik & Yang, Suk-Joon, 2011. "Valuing customers for social network services," Journal of Business Research, Elsevier, vol. 64(11), pages 1239-1244.
    15. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    16. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 151-159, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
    2. Ki-Kwang Lee & Hong-Hee Lee & Su-Ji Cho & Gyung-Su Min, 2022. "The context-based review recommendation system in e-business platform," Service Business, Springer;Pan-Pacific Business Association, vol. 16(4), pages 991-1013, December.
    3. Duncan Simester & Artem Timoshenko & Spyros I. Zoumpoulis, 2020. "Targeting Prospective Customers: Robustness of Machine-Learning Methods to Typical Data Challenges," Management Science, INFORMS, vol. 66(6), pages 2495-2522, June.
    4. Danijel Bratina & Armand Faganel, 2023. "Using Supervised Machine Learning Methods for RFM Segmentation: A Casino Direct Marketing Communication Case," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 35(1), pages 7-22.
    5. Yen-Chun Chou & Howard Hao-Chun Chuang, 2018. "A predictive investigation of first-time customer retention in online reservation services," Service Business, Springer;Pan-Pacific Business Association, vol. 12(4), pages 685-699, December.
    6. Vera L. Miguéis & Ana S. Camanho & José Borges, 2017. "Predicting direct marketing response in banking: comparison of class imbalance methods," Service Business, Springer;Pan-Pacific Business Association, vol. 11(4), pages 831-849, December.
    7. Onur Şeref & Talayeh Razzaghi & Petros Xanthopoulos, 2017. "Weighted relaxed support vector machines," Annals of Operations Research, Springer, vol. 249(1), pages 235-271, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera L. Miguéis & Ana S. Camanho & José Borges, 2017. "Predicting direct marketing response in banking: comparison of class imbalance methods," Service Business, Springer;Pan-Pacific Business Association, vol. 11(4), pages 831-849, December.
    2. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    3. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    4. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    5. Ding‐Wen Tan & William Yeoh & Yee Ling Boo & Soung‐Yue Liew, 2013. "The Impact Of Feature Selection: A Data‐Mining Application In Direct Marketing," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(1), pages 23-38, January.
    6. Gubela, Robin M. & Lessmann, Stefan & Jaroszewicz, Szymon, 2020. "Response transformation and profit decomposition for revenue uplift modeling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 647-661.
    7. Dolf Talman & Zaifu Yang, 2012. "On a Parameterized System of Nonlinear Equations with Economic Applications," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 644-671, August.
    8. Zhiqiang Zheng & Balaji Padmanabhan & Steven O. Kimbrough, 2003. "On the Existence and Significance of Data Preprocessing Biases in Web-Usage Mining," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 148-170, May.
    9. Herings, P.J.J. & Talman, A.J.J. & Yang, Z.F., 1999. "Variational Inequality Problems With a Continuum of Solutions : Existence and Computation," Other publications TiSEM 73e2f01b-ad4d-4447-95ba-a, Tilburg University, School of Economics and Management.
    10. Carlos R. Handy & Daniel Vrinceanu & Carl B. Marth & Harold A. Brooks, 2015. "Pointwise Reconstruction of Wave Functions from Their Moments through Weighted Polynomial Expansions: An Alternative Global-Local Quantization Procedure," Mathematics, MDPI, vol. 3(4), pages 1-24, November.
    11. Allen C. Goodman & Miron Stano, 2000. "Hmos and Health Externalities: A Local Public Good Perspective," Public Finance Review, , vol. 28(3), pages 247-269, May.
    12. Bode, Sven & Michaelowa, Axel, 2003. "Avoiding perverse effects of baseline and investment additionality determination in the case of renewable energy projects," Energy Policy, Elsevier, vol. 31(6), pages 505-517, May.
    13. Ala, Guido & Fasshauer, Gregory E. & Francomano, Elisa & Ganci, Salvatore & McCourt, Michael J., 2017. "An augmented MFS approach for brain activity reconstruction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 3-15.
    14. Bettina Campedelli & Andrea Guerrina & Giulia Romano & Chiara Leardini, 2014. "La performance della rete ospedaliera pubblica della regione Veneto. L?impatto delle variabili ambientali e operative sull?efficienza," MECOSAN, FrancoAngeli Editore, vol. 2014(92), pages 119-142.
    15. Haider A. Khan, 2004. "General Conclusions: From Crisis to a Global Political Economy of Freedom," Palgrave Macmillan Books, in: Global Markets and Financial Crises in Asia, chapter 9, pages 193-211, Palgrave Macmillan.
    16. Penn Loh & Zoë Ackerman & Joceline Fidalgo & Rebecca Tumposky, 2022. "Co-Education/Co-Research Partnership: A Critical Approach to Co-Learning between Dudley Street Neighborhood Initiative and Tufts University," Social Sciences, MDPI, vol. 11(2), pages 1-17, February.
    17. Broekhuis, Manda & Vos, Janita F.J., 2003. "Improving organizational sustainability using a quality perspective," Research Report 03A43, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    18. O'Brien, Raymond & Patacchini, Eleonora, 2003. "Testing the exogeneity assumption in panel data models with "non classical" disturbances," Discussion Paper Series In Economics And Econometrics 0302, Economics Division, School of Social Sciences, University of Southampton.
    19. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2002. "Perfection and Stability of Stationary Points with Applications in Noncooperative Games," Discussion Paper 2002-108, Tilburg University, Center for Economic Research.
    20. Edcarlos D. Silva & J. C. Albuquerque & T. R. Cavalcante, 2021. "Fourth-order nonlocal type elliptic problems with indefinite nonlinearities," Partial Differential Equations and Applications, Springer, vol. 2(2), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:svcbiz:v:7:y:2013:i:1:p:167-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.