IDEAS home Printed from https://ideas.repec.org/p/feb/natura/00764.html
   My bibliography  Save this paper

High-frequency location data shows that race affects the likelihood of being stopped and fined for speeding

Author

Listed:
  • Pradhi Aggarwal
  • Alec Brandon
  • Ariel Goldszmidt
  • Justin Holz
  • John List
  • Ian Muir
  • Gregory Sun
  • Thomas Yu

Abstract

Prior research finds that, conditional on an encounter, minority civilians are more likely to be punished by police than white civilians. An open question is whether the actual encounter is related to race. Using high-frequency location data of rideshare drivers operating on the Lyft platform in Florida, we estimate the effect of driver race on traffic stops and fines for speeding. Estimates obtained across traditional and machine learning approaches show that, relative to a white driver traveling the same speed, minorities are 24 to 33 percent more likely to be stopped for speeding and pay 23 to 34 percent more in fines. We find no evidence that these estimates can be explained by racial differences in accident and re-offense rates. Our study provides key insights into the total effect of civilian race on outcomes of interest and highlights the potential value of private sector data to help inform major social challenges.

Suggested Citation

  • Pradhi Aggarwal & Alec Brandon & Ariel Goldszmidt & Justin Holz & John List & Ian Muir & Gregory Sun & Thomas Yu, 2022. "High-frequency location data shows that race affects the likelihood of being stopped and fined for speeding," Natural Field Experiments 00764, The Field Experiments Website.
  • Handle: RePEc:feb:natura:00764
    as

    Download full text from publisher

    File URL: http://s3.amazonaws.com/fieldexperiments-papers2/papers/00764.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manudeep Bhuller & Gordon B. Dahl & Katrine V. Løken & Magne Mogstad, 2020. "Incarceration, Recidivism, and Employment," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1269-1324.
    2. M. Keith Chen & Kareem Haggag & Devin G. Pope & Ryne Rohla, 2019. "Racial Disparities in Voting Wait Times: Evidence from Smartphone Data," Papers 1909.00024, arXiv.org, revised Oct 2020.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. Knox, Dean & Lowe, Will & Mummolo, Jonathan, 2020. "Administrative Records Mask Racially Biased Policing—CORRIGENDUM," American Political Science Review, Cambridge University Press, vol. 114(4), pages 1394-1394, November.
    5. Roland G. Fryer, Jr, 2018. "Reconciling Results on Racial Differences in Police Shootings," NBER Working Papers 24238, National Bureau of Economic Research, Inc.
    6. Ilyana Kuziemko, 2013. "How should inmates be released from prison? An assessment of parole versus fixed-sentence regimes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(1), pages 371-424.
    7. Felipe Goncalves & Steven Mello, 2021. "A Few Bad Apples? Racial Bias in Policing," American Economic Review, American Economic Association, vol. 111(5), pages 1406-1441, May.
    8. Evan K. Rose & Yotam Shem-Tov, 2021. "How Does Incarceration Affect Reoffending? Estimating the Dose-Response Function," Journal of Political Economy, University of Chicago Press, vol. 129(12), pages 3302-3356.
    9. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    10. Emily Owens & Bocar Ba, 2021. "The Economics of Policing and Public Safety," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 3-28, Fall.
    11. Anbarci, Nejat & Lee, Jungmin, 2014. "Detecting racial bias in speed discounting: Evidence from speeding tickets in Boston," International Review of Law and Economics, Elsevier, vol. 38(C), pages 11-24.
    12. Roland G. Fryer Jr., 2019. "An Empirical Analysis of Racial Differences in Police Use of Force," Journal of Political Economy, University of Chicago Press, vol. 127(3), pages 1210-1261.
    13. Steven N. Durlauf & James J. Heckman, 2020. "An Empirical Analysis of Racial Differences in Police Use of Force: A Comment," Journal of Political Economy, University of Chicago Press, vol. 128(10), pages 3998-4002.
    14. Samuel Norris & Matthew Pecenco & Jeffrey Weaver, 2021. "The Effects of Parental and Sibling Incarceration: Evidence from Ohio," American Economic Review, American Economic Association, vol. 111(9), pages 2926-2963, September.
    15. Michael D. Makowsky & Thomas Stratmann, 2011. "More Tickets, Fewer Accidents: How Cash-Strapped Towns Make for Safer Roads," Journal of Law and Economics, University of Chicago Press, vol. 54(4), pages 863-888.
    16. Knox, Dean & Lowe, Will & Mummolo, Jonathan, 2020. "Administrative Records Mask Racially Biased Policing," American Political Science Review, Cambridge University Press, vol. 114(3), pages 619-637, August.
    17. Roland G. Fryer Jr., 2018. "Reconciling Results on Racial Differences in Police Shootings," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 228-233, May.
    18. M. Keith Chen & Devin G. Pope, 2020. "Geographic Mobility in America: Evidence from Cell Phone Data," NBER Working Papers 27072, National Bureau of Economic Research, Inc.
    19. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    20. Tanaya Devi & Roland G. Fryer Jr, 2020. "Policing the Police: The Impact of "Pattern-or-Practice" Investigations on Crime," NBER Working Papers 27324, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annan-Phan, Sébastien & Ba, Bocar A., 2024. "JUE Insight: Hot temperatures, aggression, and death at the hands of the police: Evidence from the U.S," Journal of Urban Economics, Elsevier, vol. 142(C).
    2. Lieberman, Carl, 2024. "Variation in racial disparities in police use of force," Journal of Urban Economics, Elsevier, vol. 141(C).
    3. Brendan O'Flaherty & Rajiv Sethi & Morgan Williams, 2024. "The nature, detection, and avoidance of harmful discrimination in criminal justice," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 43(1), pages 289-320, January.
    4. Stansfield, Richard & Aaronson, Ethan & Okulicz-Kozaryn, Adam, 2021. "Police use of firearms: Exploring citizen, officer, and incident characteristics in a statewide sample," Journal of Criminal Justice, Elsevier, vol. 75(C).
    5. Steeve Marchand & Guy Lacroix & William Arbour, 2023. "Prison rehabilitation programs and recidivism: evidence from variations in availability," Melbourne Institute Working Paper Series wp2023n07, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    6. Federico Masera, 2022. "The economics of policing and crimeThe economics of policing and crime," Chapters, in: Paolo Buonanno & Paolo Vanin & Juan Vargas (ed.), A Modern Guide to the Economics of Crime, chapter 2, pages 12-29, Edward Elgar Publishing.
    7. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    8. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
    9. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    10. Songul Cinaroglu, 2020. "Modelling unbalanced catastrophic health expenditure data by using machine‐learning methods," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 168-181, October.
    11. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    12. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    13. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    14. Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
    15. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    16. Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021. "Feasible generalized least squares for panel data with cross-sectional and serial correlations," Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
    17. Xing, Lu & Han, DongHao & Hui, Xie, 2023. "The impact of carbon policy on corporate risk-taking with a double/debiased machine learning based difference-in-differences approach," Finance Research Letters, Elsevier, vol. 58(PC).
    18. Yong Bian & Xiqian Wang & Qin Zhang, 2023. "How Does China's Household Portfolio Selection Vary with Financial Inclusion?," Papers 2311.01206, arXiv.org.
    19. Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
    20. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:feb:natura:00764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesca Pagnotta (email available below). General contact details of provider: http://www.fieldexperiments.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.