A strategic framework for artificial intelligence in marketing
Author
Abstract
Suggested Citation
DOI: 10.1007/s11747-020-00749-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
- Rodrigo Montes & Wilfried Sand-Zantman & Tommaso Valletti, 2019.
"The Value of Personal Information in Online Markets with Endogenous Privacy,"
Management Science, INFORMS, vol. 65(3), pages 1342-1362, March.
- Montes, Rodrigo & Sand-Zantman, Wilfried & Valletti, Tommaso M., 2015. "The value of personal information in online markets with endogenous privacy," TSE Working Papers 15-583, Toulouse School of Economics (TSE), revised May 2017.
- Rodrigo Montes & Wilfried Sand-Zantman & Tommaso M. Valletti, 2019. "The value of personal information in online markets with endogenous privacy," Post-Print hal-03270184, HAL.
- Nico Neumann & Catherine E. Tucker & Timothy Whitfield, 2019. "Frontiers: How Effective Is Third-Party Consumer Profiling? Evidence from Field Studies," Marketing Science, INFORMS, vol. 38(6), pages 918-926, November.
- Ajayeb S. Abu Daabes & Faten F. Kharbat, 2017. "Customer-based perceptual map as a marketing intelligence source," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 13(4), pages 360-379.
- Shuba Srinivasan & Oliver J. Rutz & Koen Pauwels, 2016. "Paths to and off purchase: quantifying the impact of traditional marketing and online consumer activity," Journal of the Academy of Marketing Science, Springer, vol. 44(4), pages 440-453, July.
- Chiara Longoni & Andrea Bonezzi & Carey K Morewedge, 2019. "Resistance to Medical Artificial Intelligence," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(4), pages 629-650.
- Schneider, Matthew J. & Jagpal, Sharan & Gupta, Sachin & Li, Shaobo & Yu, Yan, 2017. "Protecting customer privacy when marketing with second-party data," International Journal of Research in Marketing, Elsevier, vol. 34(3), pages 593-603.
- David H. Autor & David Dorn, 2013.
"The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market,"
American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
- David H. Autor & David Dorn, 2009. "The Growth of Low Skill Service Jobs and the Polarization of the U.S. Labor Market," NBER Working Papers 15150, National Bureau of Economic Research, Inc.
- Autor, David & Dorn, David, 2012. "The Growth of Low Skill Service Jobs and the Polarization of the U.S. Labor Market," IZA Discussion Papers 7068, Institute of Labor Economics (IZA).
- Ashlee Humphreys & Rebecca Jen-Hui Wang & Eileen FischerEditor & Linda PriceAssociate Editor, 2018. "Automated Text Analysis for Consumer Research," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(6), pages 1274-1306.
- Ritu Agarwal & Michelle Dugas & Guodong (Gordon) Gao & P. K. Kannan, 2020. "Emerging technologies and analytics for a new era of value-centered marketing in healthcare," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 9-23, January.
- Lehmann, Donald R., 2020. "The evolving world of research in marketing and the blending of theory and data," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 27-42.
- Tuck Siong Chung & Roland T. Rust & Michel Wedel, 2009. "My Mobile Music: An Adaptive Personalization System for Digital Audio Players," Marketing Science, INFORMS, vol. 28(1), pages 52-68, 01-02.
- Anja Lambrecht & Catherine Tucker, 2019. "Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads," Management Science, INFORMS, vol. 65(7), pages 2966-2981, July.
- Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
- Dokyun Lee & Kartik Hosanagar & Harikesh S. Nair, 2018. "Advertising Content and Consumer Engagement on Social Media: Evidence from Facebook," Management Science, INFORMS, vol. 64(11), pages 5105-5131, November.
- Thomas P. Novak & Donna L. Hoffman, 2019. "Relationship journeys in the internet of things: a new framework for understanding interactions between consumers and smart objects," Journal of the Academy of Marketing Science, Springer, vol. 47(2), pages 216-237, March.
- Naveen Donthu & Roland T. Rust, 1989. "Note—Estimating Geographic Customer Densities Using Kernel Density Estimation," Marketing Science, INFORMS, vol. 8(2), pages 191-203.
- Ming-Hui Huang & Roland T. Rust, 2017. "Technology-driven service strategy," Journal of the Academy of Marketing Science, Springer, vol. 45(6), pages 906-924, November.
- Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
- Gah-Yi Ban & Noureddine El Karoui & Andrew E. B. Lim, 2018. "Machine Learning and Portfolio Optimization," Management Science, INFORMS, vol. 64(3), pages 1136-1154, March.
- Hartmann, Jochen & Huppertz, Juliana & Schamp, Christina & Heitmann, Mark, 2019. "Comparing automated text classification methods," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 20-38.
- Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
- Dhruv Grewal & Stephanie M. Noble & Anne L. Roggeveen & Jens Nordfalt, 2020. "The future of in-store technology," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 96-113, January.
- Jacky C. K. Chow, 2018. "Analysis of Financial Credit Risk Using Machine Learning," Papers 1802.05326, arXiv.org.
- Donna L Hoffman & Thomas P Novak & Eileen FischerEditor & Robert KozinetsAssociate Editor, 2018. "Consumer and Object Experience in the Internet of Things: An Assemblage Theory Approach," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(6), pages 1178-1204.
- Seo Young Kim & Bernd H. Schmitt & Nadia M. Thalmann, 2019. "Eliza in the uncanny valley: anthropomorphizing consumer robots increases their perceived warmth but decreases liking," Marketing Letters, Springer, vol. 30(1), pages 1-12, March.
- Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
- Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
- Siliang Tong & Xueming Luo & Bo Xu, 2020. "Personalized mobile marketing strategies," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 64-78, January.
- Daria Dzyabura & John R. Hauser, 2019. "Recommending Products When Consumers Learn Their Preference Weights," Marketing Science, INFORMS, vol. 38(3), pages 417-441, May.
- Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
- Felipe Thomaz & Carolina Salge & Elena Karahanna & John Hulland, 2020. "Learning from the Dark Web: leveraging conversational agents in the era of hyper-privacy to enhance marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 43-63, January.
- Matthew J. Schneider & Sharan Jagpal & Sachin Gupta & Shaobo Li & Yan Yu, 2018. "A Flexible Method for Protecting Marketing Data: An Application to Point-of-Sale Data," Marketing Science, INFORMS, vol. 37(1), pages 153-171, January.
- Tuck Siong Chung & Michel Wedel & Roland T. Rust, 2016. "Adaptive personalization using social networks," Journal of the Academy of Marketing Science, Springer, vol. 44(1), pages 66-87, January.
- Liu, Xingyi, 2020. "De-targeting to signal quality," International Journal of Research in Marketing, Elsevier, vol. 37(2), pages 386-404.
- Manjit S. Yadav & Paul A. Pavlou, 2020. "Technology-enabled interactions in digital environments:a conceptual foundation for current and future research," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 132-136, January.
- Duncan Simester & Artem Timoshenko & Spyros I. Zoumpoulis, 2020. "Targeting Prospective Customers: Robustness of Machine-Learning Methods to Typical Data Challenges," Management Science, INFORMS, vol. 66(6), pages 2495-2522, June.
- Kanishka Misra & Eric M. Schwartz & Jacob Abernethy, 2019. "Dynamic Online Pricing with Incomplete Information Using Multiarmed Bandit Experiments," Marketing Science, INFORMS, vol. 38(2), pages 226-252, March.
- Thomas Davenport & Abhijit Guha & Dhruv Grewal & Timna Bressgott, 2020. "How artificial intelligence will change the future of marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 24-42, January.
- Miremad Soleymanian & Charles B. Weinberg & Ting Zhu, 2019. "Sensor Data and Behavioral Tracking: Does Usage-Based Auto Insurance Benefit Drivers?," Marketing Science, INFORMS, vol. 38(1), pages 21-43, January.
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Willcock, Simon & Martínez-López, Javier & Hooftman, Danny A.P. & Bagstad, Kenneth J. & Balbi, Stefano & Marzo, Alessia & Prato, Carlo & Sciandrello, Saverio & Signorello, Giovanni & Voigt, Brian & Vi, 2018. "Machine learning for ecosystem services," Ecosystem Services, Elsevier, vol. 33(PB), pages 165-174.
- Dekimpe, Marnik G., 2020. "Retailing and retailing research in the age of big data analytics," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 3-14.
- Alan D. J. Cooke & Peter P. Zubcsek, 2017. "The Connected Consumer: Connected Devices and the Evolution of Customer Intelligence," Journal of the Association for Consumer Research, University of Chicago Press, vol. 2(2), pages 164-178.
- Pradeep Chintagunta & Dominique M. Hanssens & John R. Hauser, 2016. "Editorial—Marketing Science and Big Data," Marketing Science, INFORMS, vol. 35(3), pages 341-342, May.
- Quan Wang & Beibei Li & Param Vir Singh, 2018. "Copycats vs. Original Mobile Apps: A Machine Learning Copycat-Detection Method and Empirical Analysis," Information Systems Research, INFORMS, vol. 29(2), pages 273-291, June.
- Rust, Roland T., 2020. "The future of marketing," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 15-26.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Ming-Hui & Rust, Roland T., 2022. "A Framework for Collaborative Artificial Intelligence in Marketing," Journal of Retailing, Elsevier, vol. 98(2), pages 209-223.
- Erik Hermann, 2022. "Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective," Journal of Business Ethics, Springer, vol. 179(1), pages 43-61, August.
- David A. Schweidel & Yakov Bart & J. Jeffrey Inman & Andrew T. Stephen & Barak Libai & Michelle Andrews & Ana Babić Rosario & Inyoung Chae & Zoey Chen & Daniella Kupor & Chiara Longoni & Felipe Thomaz, 2022. "How consumer digital signals are reshaping the customer journey," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1257-1276, November.
- Rust, Roland T., 2020. "The future of marketing," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 15-26.
- Dhruv Grewal & John Hulland & Praveen K. Kopalle & Elena Karahanna, 2020. "The future of technology and marketing: a multidisciplinary perspective," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 1-8, January.
- Manis, K.T. & Madhavaram, Sreedhar, 2023. "AI-Enabled marketing capabilities and the hierarchy of capabilities: Conceptualization, proposition development, and research avenues," Journal of Business Research, Elsevier, vol. 157(C).
- Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
- Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
- Erik Hermann & Gizem Yalcin Williams & Stefano Puntoni, 2024. "Deploying artificial intelligence in services to AID vulnerable consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1431-1451, October.
- Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
- Chen, Yanyan & Mandler, Timo & Meyer-Waarden, Lars, 2021. "Three decades of research on loyalty programs: A literature review and future research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 179-197.
- Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Venkatesh Shankar & Sohil Parsana, 2022. "An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1324-1350, November.
- Akter, Shahriar & Dwivedi, Yogesh K. & Sajib, Shahriar & Biswas, Kumar & Bandara, Ruwan J. & Michael, Katina, 2022. "Algorithmic bias in machine learning-based marketing models," Journal of Business Research, Elsevier, vol. 144(C), pages 201-216.
- Hsing Kenneth Cheng & D. Daniel Sokol & Xinyu Zang, 2024. "The rise of empirical online platform research in the new millennium," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 416-451, March.
- Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
- Grewal, Dhruv & Herhausen, Dennis & Ludwig, Stephan & Villarroel Ordenes, Francisco, 2022. "The Future of Digital Communication Research: Considering Dynamics and Multimodality," Journal of Retailing, Elsevier, vol. 98(2), pages 224-240.
- Stephanie M. Noble & Martin Mende, 2023. "The future of artificial intelligence and robotics in the retail and service sector: Sketching the field of consumer-robot-experiences," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 747-756, July.
- Grewal, Dhruv & Roggeveen, Anne L., 2020. "Understanding Retail Experiences and Customer Journey Management," Journal of Retailing, Elsevier, vol. 96(1), pages 3-8.
More about this item
Keywords
Artificial intelligence; Machine learning; Mechanical AI; Thinking AI; Feeling AI; Strategic AI marketing; Marketing strategy; Standardization; Personalization; Relationalization; Segmentation; Targeting; Positioning; 4Ps; 4Cs;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joamsc:v:49:y:2021:i:1:d:10.1007_s11747-020-00749-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.