IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v43y2024i6p1226-1241.html
   My bibliography  Save this article

Competitive Model Selection in Algorithmic Targeting

Author

Listed:
  • Ganesh Iyer

    (University of California at Berkeley, Berkeley, California 94720)

  • T. Tony Ke

    (Chinese University of Hong Kong, Hong Kong)

Abstract

We study how market competition influences the algorithmic design choices of firms in the context of targeting. Firms face a general bias-variance trade-off when choosing the design of a supervised learning algorithm in terms of model complexity or the number of predictors to accommodate. Each firm has a data analyst who uses the chosen algorithm to estimate demand for multiple consumer segments, based on which it devises a targeting policy to maximize estimated profits. We show that competition induces firms to strategically choose simpler algorithms that involve more bias but lower variance. Therefore, more complex/flexible algorithms may have higher value for firms with greater monopoly power.

Suggested Citation

  • Ganesh Iyer & T. Tony Ke, 2024. "Competitive Model Selection in Algorithmic Targeting," Marketing Science, INFORMS, vol. 43(6), pages 1226-1241, November.
  • Handle: RePEc:inm:ormksc:v:43:y:2024:i:6:p:1226-1241
    DOI: 10.1287/mksc.2023.0175
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2023.0175
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2023.0175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuval Salant & Josh Cherry, 2020. "Statistical Inference in Games," Econometrica, Econometric Society, vol. 88(4), pages 1725-1752, July.
    2. Annie Liang, 2019. "Games of Incomplete Information Played By Statisticians," Papers 1910.07018, arXiv.org, revised Jul 2020.
    3. Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
    4. Bulow, Jeremy I & Geanakoplos, John D & Klemperer, Paul D, 1985. "Multimarket Oligopoly: Strategic Substitutes and Complements," Journal of Political Economy, University of Chicago Press, vol. 93(3), pages 488-511, June.
    5. Ganesh Iyer & David Soberman & J. Miguel Villas-Boas, 2005. "The Targeting of Advertising," Marketing Science, INFORMS, vol. 24(3), pages 461-476, May.
    6. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    7. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    8. Jiwoong Shin & Jungju Yu, 2021. "Targeted Advertising and Consumer Inference," Marketing Science, INFORMS, vol. 40(5), pages 900-922, September.
    9. O’Connor, Jason & Wilson, Nathan E., 2021. "Reduced demand uncertainty and the sustainability of collusion: How AI could affect competition," Information Economics and Policy, Elsevier, vol. 54(C).
    10. Kfir Eliaz & Ran Spiegler, 2019. "The Model Selection Curse," American Economic Review: Insights, American Economic Association, vol. 1(2), pages 127-140, September.
    11. Wayne Taylor & Brett Hollenbeck, 2021. "Leveraging loyalty programs using competitor based targeting," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 417-455, December.
    12. Jonathan Levin & Paul Milgrom, 2010. "Online Advertising: Heterogeneity and Conflation in Market Design," American Economic Review, American Economic Association, vol. 100(2), pages 603-607, May.
    13. Duncan Simester & Artem Timoshenko & Spyros I. Zoumpoulis, 2020. "Targeting Prospective Customers: Robustness of Machine-Learning Methods to Typical Data Challenges," Management Science, INFORMS, vol. 66(6), pages 2495-2522, June.
    14. Yuxin Chen & Chakravarthi Narasimhan & Z. John Zhang, 2001. "Individual Marketing with Imperfect Targetability," Marketing Science, INFORMS, vol. 20(1), pages 23-41, November.
    15. Gerard R. Butters, 1977. "Equilibrium Distributions of Sales and Advertising Prices," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 44(3), pages 465-491.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Iyer & T. Tony Ke, 2022. "Competitive Algorithmic Targeting and Model Selection," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
    2. Jiwoong Shin & Jungju Yu, 2021. "Targeted Advertising and Consumer Inference," Marketing Science, INFORMS, vol. 40(5), pages 900-922, September.
    3. Peitz, Martin & Reisinger, Markus, 2014. "The Economics of Internet Media," Working Papers 14-23, University of Mannheim, Department of Economics.
    4. Stylianos Despotakis & Jungju Yu, 2023. "Multidimensional Targeting and Consumer Response," Management Science, INFORMS, vol. 69(8), pages 4518-4540, August.
    5. Avi Goldfarb, 2014. "What is Different About Online Advertising?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(2), pages 115-129, March.
    6. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    7. Zhao Jiang & Dan Wu, 2022. "Targeting Precision in Imperfect Targeted Advertising: Implications for the Regulation of Market Structure and Efficiency," SAGE Open, , vol. 12(1), pages 21582440221, March.
    8. Stefano Colombo & Aldo Pignataro, 2022. "Information accuracy and collusion," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(3), pages 638-656, August.
    9. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    10. Esteves, Rosa-Branca & Cerqueira, Sofia, 2017. "Behavior-based pricing under imperfectly informed consumers," Information Economics and Policy, Elsevier, vol. 40(C), pages 60-70.
    11. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    12. Pedro M. Gardete & Yakov Bart, 2018. "Tailored Cheap Talk: The Effects of Privacy Policy on Ad Content and Market Outcomes," Marketing Science, INFORMS, vol. 37(5), pages 733-752, September.
    13. Zhao Jiang & Wu Dan & Liu Jie, 2020. "Distinct role of targeting precision of Internet-based targeted advertising in duopolistic e-business firms’ heterogeneous consumers market," Electronic Commerce Research, Springer, vol. 20(2), pages 453-474, June.
    14. W. Jason Choi & Amin Sayedi, 2024. "Agency Market Power and Information Disclosure in Online Advertising," Marketing Science, INFORMS, vol. 43(6), pages 1279-1298, November.
    15. John Asker & Chaim Fershtman & Ariel Pakes, 2024. "The impact of artificial intelligence design on pricing," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 276-304, March.
    16. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    17. Jiwoong Shin & Chi-Ying Wang, 2024. "The Role of Messenger in Advertising Content: Bayesian Persuasion Perspective," Marketing Science, INFORMS, vol. 43(4), pages 840-862, July.
    18. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    19. Il-Horn Hann & Kai-Lung Hui & Sang-Yong Tom Lee & Ivan Png, 2005. "Consumer Privacy and Marketing Avoidance," Industrial Organization 0503009, University Library of Munich, Germany.
    20. Bharat Anand & Ron Shachar, 2009. "Targeted advertising as a signal," Quantitative Marketing and Economics (QME), Springer, vol. 7(3), pages 237-266, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:43:y:2024:i:6:p:1226-1241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.