IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v23y2004i2p234-242.html
   My bibliography  Save this article

The Additive Risk Model for Purchase Timing

Author

Listed:
  • P. B. Seetharaman

    (John M. Olin School of Business, Washington University, Campus Box 1133, One Brookings Drive, St. Louis, Missouri 63130-4899)

Abstract

This paper proposes the (ARM), first used by Aalen (1980), to explain households' interpurchase times. Unlike the Proportional Hazard Model (PHM), first proposed by Cox (1972), the ARM incorporates the effects of covariates on the individual hazard function in an (as opposed to ) manner. While a large number of previous studies on interpurchase timing have dealt with the question of correctly specifying the parametric distribution for interpurchase times, no study has explicitly investigated the question of correctly specifying the effects of covariates in the model. This study looks at this issue. We propose an ARM that is suitable for purchase-timing data, and compare its empirical performance to that of the PHM and the Accelerated Failure Time Model (AFTM) using scanner panel data on laundry detergents, paper towels, and toilet tissue. We find that the ARM not only estimates and validates the observed interpurchase times better than existing models, but also recovers a time-varying price elasticity and shows a high degree of robustness in the estimated covariate effects to alternative parametric specifications of the baseline hazard. The estimates of covariate parameters under the PHM, on the other hand, are highly sensitive to alternative parametric specifications of the baseline hazard.

Suggested Citation

  • P. B. Seetharaman, 2004. "The Additive Risk Model for Purchase Timing," Marketing Science, INFORMS, vol. 23(2), pages 234-242, March.
  • Handle: RePEc:inm:ormksc:v:23:y:2004:i:2:p:234-242
    DOI: 10.1287/mksc.1030.0021
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1030.0021
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1030.0021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    2. Saha, Atanu & Hilton, Lynette, 1997. "Expo-power: A flexible hazard function for duration data models," Economics Letters, Elsevier, vol. 54(3), pages 227-233, July.
    3. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    4. Pradeep K. Chintagunta, 1998. "Inertia and Variety Seeking in a Model of Brand-Purchase Timing," Marketing Science, INFORMS, vol. 17(3), pages 253-270.
    5. Kristiaan Helsen & David C. Schmittlein, 1993. "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models," Marketing Science, INFORMS, vol. 12(4), pages 395-414.
    6. Greenwood, P. E. & Wefelmeyer, W., 1990. "Efficiency of estimators for partially specified filtered models," Stochastic Processes and their Applications, Elsevier, vol. 36(2), pages 353-370, December.
    7. Rita D. Wheat & Donald G. Morrison, 1990. "Assessing Purchase Timing Models: Whether or Not is Preferable to When," Marketing Science, INFORMS, vol. 9(2), pages 162-170.
    8. Robin Henderson & Alvin Milner, 1991. "Aalen Plots Under Proportional Hazards," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(3), pages 401-409, November.
    9. Seetharaman, P B & Chintagunta, Pradeep K, 2003. "The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 368-382, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Seetharaman & Siddhartha Chib & Andrew Ainslie & Peter Boatwright & Tat Chan & Sachin Gupta & Nitin Mehta & Vithala Rao & Andrei Strijnev, 2005. "Models of Multi-Category Choice Behavior," Marketing Letters, Springer, vol. 16(3), pages 239-254, December.
    2. Koray Cosguner & P. B. (Seethu) Seetharaman, 2022. "Dynamic Pricing for New Products Using a Utility-Based Generalization of the Bass Diffusion Model," Management Science, INFORMS, vol. 68(3), pages 1904-1922, March.
    3. Fok, Dennis & Paap, Richard & Franses, Philip Hans, 2012. "Modeling dynamic effects of promotion on interpurchase times," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3055-3069.
    4. Zhang, Qin & Seetharaman, P.B. & Narasimhan, Chakravarthi, 2012. "The Indirect Impact of Price Deals on Households’ Purchase Decisions Through the Formation of Expected Future Prices," Journal of Retailing, Elsevier, vol. 88(1), pages 88-101.
    5. Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.
    6. Nitin Mehta, 2007. "Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis," Marketing Science, INFORMS, vol. 26(2), pages 196-217, 03-04.
    7. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    8. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    9. Marko Sarstedt & Sebastian Scharf & Alexander Thamm & Michael Wolff, 2010. "Die Prognose von Serviceintervallen mit der Hazard-Raten-Analyse – Ergebnisse einer empirischen Studie im Automobilmarkt," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(3), pages 269-283, April.
    10. Qiu, Guiyou & Papatla, Purushottam, 2008. "An empirical analysis of inter-acquisition time of free online content," Journal of Interactive Marketing, Elsevier, vol. 22(2), pages 19-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meade, Nigel & Islam, Towhidul, 2010. "Using copulas to model repeat purchase behaviour - An exploratory analysis via a case study," European Journal of Operational Research, Elsevier, vol. 200(3), pages 908-917, February.
    2. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    3. Govert Bijwaard, 2010. "Regularity in individual shopping trips: implications for duration models in marketing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1931-1945.
    4. Marko Sarstedt & Sebastian Scharf & Alexander Thamm & Michael Wolff, 2010. "Die Prognose von Serviceintervallen mit der Hazard-Raten-Analyse – Ergebnisse einer empirischen Studie im Automobilmarkt," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(3), pages 269-283, April.
    5. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    6. Bijwaard, Govert E. & Franses, Philip Hans & Paap, Richard, 2006. "Modeling Purchases as Repeated Events," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 487-502, October.
    7. Yang, Yupin & Shi, Mengze, 2011. "Rise and fall of stars: Investigating the evolution of star status in professional team sports," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 352-366.
    8. Vishal P. Singh & Karsten T. Hansen & Robert C. Blattberg, 2006. "Market Entry and Consumer Behavior: An Investigation of a Wal-Mart Supercenter," Marketing Science, INFORMS, vol. 25(5), pages 457-476, September.
    9. S. Siddarth & Amitava Chattopadhyay, 1998. "To Zap or Not to Zap: A Study of the Determinants of Channel Switching During Commercials," Marketing Science, INFORMS, vol. 17(2), pages 124-138.
    10. Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.
    11. Konstantin Kogan & Avi Herbon & Beatrice Venturi, 2020. "Direct marketing of an event under hazards of customer saturation and forgetting," Annals of Operations Research, Springer, vol. 295(1), pages 207-227, December.
    12. Dennis Fok & Richard Paap, 2009. "Modeling category‐level purchase timing with brand‐level marketing variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 469-489, April.
    13. Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.
    14. Garczorz, Ingo, 2001. "Anwendung der Hazard-Analyse im Marketing: Einführung und Literaturüberblick," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 548, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Ryosuke Igari & Takahiro Hoshino, 2018. "A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model," Keio-IES Discussion Paper Series 2018-021, Institute for Economics Studies, Keio University.
    16. Fok, Dennis & Paap, Richard & Franses, Philip Hans, 2012. "Modeling dynamic effects of promotion on interpurchase times," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3055-3069.
    17. Ran Kivetz & Oleg Urminsky & Yuhuang Zheng, 2006. "The Goal-Gradient Hypothesis Resurrected: Purchase Acceleration, Illusionary Goal Progress, and Customer Retention," Natural Field Experiments 00658, The Field Experiments Website.
    18. Chao Ma & Hao Zhang & Hongbiao Zhao, 2023. "Securitization of assets with payment delay risk: A financial innovation in the real estate market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(4), pages 480-515, April.
    19. Pradeep K. Chintagunta, 1998. "Inertia and Variety Seeking in a Model of Brand-Purchase Timing," Marketing Science, INFORMS, vol. 17(3), pages 253-270.
    20. Howdon, Daniel & Jones, Andrew M., 2015. "A discrete latent factor model for smoking, cancer and mortality," Economics & Human Biology, Elsevier, vol. 18(C), pages 57-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:23:y:2004:i:2:p:234-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.