IDEAS home Printed from https://ideas.repec.org/p/keo/dpaper/2018-021.html
   My bibliography  Save this paper

A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model

Author

Listed:
  • Ryosuke Igari

    (Faculty of Business Administration, Hosei University)

  • Takahiro Hoshino

    (Faculty of Economics, Keio University)

Abstract

In statistics, researchers have rigorously investigated the reproductive property, which maintains that the sum of independent random variables with the same distribution follows the same family of distributions. However, even if a distribution of the sum of random variables demonstrates the reproductive property, estimating parameters appropriately from only summed observations is difficult. This is because of identification problems when component random variables have different parameters. In this study, we develop a method to effectively estimate parameters from the sum of independent random variables with different parameters. In particular, we focus on the sum of Gamma random variables composed of two types of distributions. We generalize the result according to Moschopoulos(1985) to a proportional hazard model with covariates and a frailty model to capture individual heterogeneities. Additionally, to estimate each parameter from the sum of random variables, we incorporate auxiliary information using quasi-Bayesian methods, and we propose the estimation procedure by Markov chain Monte Carlo. We confirm the effectiveness of the proposed method through a simulation study and apply it to the interpurchase timing model in marketing.

Suggested Citation

  • Ryosuke Igari & Takahiro Hoshino, 2018. "A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model," Keio-IES Discussion Paper Series 2018-021, Institute for Economics Studies, Keio University.
  • Handle: RePEc:keo:dpaper:2018-021
    as

    Download full text from publisher

    File URL: https://ies.keio.ac.jp/upload/pdf/en/DP2018-021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sim, C. H., 1992. "Point processes with correlated gamma interarrival times," Statistics & Probability Letters, Elsevier, vol. 15(2), pages 135-141, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    4. Judith K. Hellerstein & Guido W. Imbens, 1999. "Imposing Moment Restrictions From Auxiliary Data By Weighting," The Review of Economics and Statistics, MIT Press, vol. 81(1), pages 1-14, February.
    5. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    6. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    7. Kristiaan Helsen & David C. Schmittlein, 1993. "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models," Marketing Science, INFORMS, vol. 12(4), pages 395-414.
    8. Guido W. Imbens & Tony Lancaster, 1994. "Combining Micro and Macro Data in Microeconometric Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 655-680.
    9. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
    10. Bijwaard, Govert E. & Franses, Philip Hans & Paap, Richard, 2006. "Modeling Purchases as Repeated Events," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 487-502, October.
    11. Yao Zhang & Eric T. Bradlow & Dylan S. Small, 2015. "Predicting Customer Value Using Clumpiness: From RFM to RFMC," Marketing Science, INFORMS, vol. 34(2), pages 195-208, March.
    12. Ridder, Geert & Moffitt, Robert, 2007. "The Econometrics of Data Combination," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 75, Elsevier.
    13. Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
    14. Seetharaman, P B & Chintagunta, Pradeep K, 2003. "The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 368-382, July.
    15. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.
    16. Wendy W. Moe & Peter S. Fader, 2004. "Dynamic Conversion Behavior at E-Commerce Sites," Management Science, INFORMS, vol. 50(3), pages 326-335, March.
    17. Chiung-Yu Huang & Jing Qin & Huei-Ting Tsai, 2016. "Efficient Estimation of the Cox Model with Auxiliary Subgroup Survival Information," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 787-799, April.
    18. Yao Zhang & Eric T. Bradlow & Dylan S. Small, 2013. "New measures of clumpiness for incidence data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(11), pages 2533-2548, November.
    19. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    20. Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
    21. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    22. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    2. Takahiro Hoshino & Ryosuke Igari, 2017. "Quasi-Bayesian Inference for Latent Variable Models with External Information: Application to generalized linear mixed models for biased data," Keio-IES Discussion Paper Series 2017-014, Institute for Economics Studies, Keio University.
    3. Govert Bijwaard, 2010. "Regularity in individual shopping trips: implications for duration models in marketing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1931-1945.
    4. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    5. Liu, Tianqing & Yuan, Xiaohui, 2012. "Combining quasi and empirical likelihoods in generalized linear models with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 39-58.
    6. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian Instrumental Variables Estimation for Nonignorable Missing Instruments," Discussion Paper Series DP2020-06, Research Institute for Economics & Business Administration, Kobe University.
    7. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    8. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.
    9. Meade, Nigel & Islam, Towhidul, 2010. "Using copulas to model repeat purchase behaviour - An exploratory analysis via a case study," European Journal of Operational Research, Elsevier, vol. 200(3), pages 908-917, February.
    10. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    11. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    12. Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
    13. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    14. Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.
    15. Kwangpil Chang & S. Siddarth & Charles B. Weinberg, 1999. "The Impact of Heterogeneity in Purchase Timing and Price Responsiveness on Estimates of Sticker Shock Effects," Marketing Science, INFORMS, vol. 18(2), pages 178-192.
    16. Marko Sarstedt & Sebastian Scharf & Alexander Thamm & Michael Wolff, 2010. "Die Prognose von Serviceintervallen mit der Hazard-Raten-Analyse – Ergebnisse einer empirischen Studie im Automobilmarkt," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(3), pages 269-283, April.
    17. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    18. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    19. Konstantin Kogan & Avi Herbon & Beatrice Venturi, 2020. "Direct marketing of an event under hazards of customer saturation and forgetting," Annals of Operations Research, Springer, vol. 295(1), pages 207-227, December.
    20. Devereux, Paul J. & Tripathi, Gautam, 2009. "Optimally combining censored and uncensored datasets," Journal of Econometrics, Elsevier, vol. 151(1), pages 17-32, July.

    More about this item

    Keywords

    Survival Analysis; Random Effects; Auxiliary Information; Quasi-Bayesian Inference; Markov Chain Monte Carlo;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:keo:dpaper:2018-021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Institute for Economics Studies, Keio University (email available below). General contact details of provider: https://edirc.repec.org/data/iekeijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.