IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i5p2067-2083.html
   My bibliography  Save this article

Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model

Author

Listed:
  • Xinxue (Shawn) Qu
  • Aslan Lotfi
  • Dipak C. Jain
  • Zhengrui Jiang

Abstract

In the presence of successive product generations, most consumers are repeat buyers who may decide to purchase a future product generation even before its release. Therefore, after a new product generation enters the market, its sales often exhibit a declining pattern, which renders traditional diffusion models unsuitable for characterizing consumers’ decisions on upgrade timing. In this study, we propose an Exponential‐Decay proportional hazard model (Expo‐Decay model) to predict consumers’ time to product upgrade. The Expo‐Decay model is parsimonious, interpretable, and performs better than do existing models. We apply the Expo‐Decay model and three extensions to study consumers’ upgrade behavior for a sports video game series. Empirical results reveal that consumers’ previous adoption and usage patterns can help predict their timing to upgrades. In particular, we find that consumers who have adopted the immediate past generation and those who play games from previous generations more often tend to upgrade earlier, whereas those who specialize in a small subset of game modes tend to upgrade later. Further, we find that complex extensions to the Expo‐Decay model do not lead to better prediction performance than does the baseline Expo‐Decay model, whereas a time‐variant extension that updates the values of covariates over time outperforms the baseline model with static data.

Suggested Citation

  • Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:5:p:2067-2083
    DOI: 10.1111/poms.13665
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13665
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    2. Gerlach, Jin & Stock, Ruth & Buxmann, Peter, 2014. "Never Forget Where You’re Coming From: The Role of Existing Products in Adoptions of Substituting Technologies," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62159, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    4. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    5. Sulin Ba & Yuan Jin & Xinxin Li & Xianghua Lu, 2020. "One Size Fits All? The Differential Impact of Online Reviews and Coupons," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2403-2424, October.
    6. Zhengrui Jiang & Dipak C. Jain, 2012. "A Generalized Norton-Bass Model for Multigeneration Diffusion," Management Science, INFORMS, vol. 58(10), pages 1887-1897, October.
    7. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    8. van Rijnsoever, Frank J. & Oppewal, Harmen, 2012. "Predicting early adoption of successive video player generations," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 558-569.
    9. Tingliang Huang & Jan A. Van Mieghem, 2014. "Clickstream Data and Inventory Management: Model and Empirical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 23(3), pages 333-347, March.
    10. Seetharaman, P B & Chintagunta, Pradeep K, 2003. "The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 368-382, July.
    11. Ehrenberg, Andrew S. C. & Uncles, Mark D. & Goodhardt, Gerald J., 2004. "Understanding brand performance measures: using Dirichlet benchmarks," Journal of Business Research, Elsevier, vol. 57(12), pages 1307-1325, December.
    12. Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
    13. Nicole Van Nes & Jacqueline Cramer, 2008. "Conceptual model on replacement behaviour," International Journal of Product Development, Inderscience Enterprises Ltd, vol. 6(3/4), pages 291-309.
    14. Uncles, Mark D. & Ehrenberg, Andrew S. C. & Goodhardt, Gerald J., 2004. "Reply to commentary on "Understanding brand performance measures: using Dirichlet benchmarks"," Journal of Business Research, Elsevier, vol. 57(12), pages 1329-1330, December.
    15. P. B. Seetharaman, 2004. "The Additive Risk Model for Purchase Timing," Marketing Science, INFORMS, vol. 23(2), pages 234-242, March.
    16. R. Mark Krankel & Izak Duenyas & Roman Kapuscinski, 2006. "Timing Successive Product Introductions with Demand Diffusion and Stochastic Technology Improvement," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 119-135, June.
    17. Qi Feng & J. George Shanthikumar, 2018. "How Research in Production and Operations Management May Evolve in the Era of Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1670-1684, September.
    18. Kristiaan Helsen & David C. Schmittlein, 1993. "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models," Marketing Science, INFORMS, vol. 12(4), pages 395-414.
    19. Indranil Bardhan & Jeong-ha (Cath) Oh & Zhiqiang (Eric) Zheng & Kirk Kirksey, 2015. "Predictive Analytics for Readmission of Patients with Congestive Heart Failure," Information Systems Research, INFORMS, vol. 26(1), pages 19-39, March.
    20. Liangfei Qiu & Andrew B. Whinston, 2017. "Pricing Strategies under Behavioral Observational Learning in Social Networks," Production and Operations Management, Production and Operations Management Society, vol. 26(7), pages 1249-1267, July.
    21. Mohanbir S. Sawhney & Jehoshua Eliashberg, 1996. "A Parsimonious Model for Forecasting Gross Box-Office Revenues of Motion Pictures," Marketing Science, INFORMS, vol. 15(2), pages 113-131.
    22. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    23. Prins, R. & Verhoef, P.C., 2007. "Marketing Communication Drivers of Adoption Timing of a New E-Service among Existing Customers," ERIM Report Series Research in Management ERS-2007-018-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    24. Tonya Boone & Ram Ganeshan & Robert L. Hicks & Nada R. Sanders, 2018. "Can Google Trends Improve Your Sales Forecast?," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1770-1774, October.
    25. Raymond Yiu Keung Lau & Wenping Zhang & Wei Xu, 2018. "Parallel Aspect‐Oriented Sentiment Analysis for Sales Forecasting with Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1775-1794, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    2. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    3. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    4. Marko Sarstedt & Sebastian Scharf & Alexander Thamm & Michael Wolff, 2010. "Die Prognose von Serviceintervallen mit der Hazard-Raten-Analyse – Ergebnisse einer empirischen Studie im Automobilmarkt," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(3), pages 269-283, April.
    5. Bayrak, Busra & Guray, Busra & Uzunlar, Nilsu & Nadar, Emre, 2024. "Diffusion control in closed-loop supply chains: Successive product generations," International Journal of Production Economics, Elsevier, vol. 268(C).
    6. Chuan Zhang & Yu-Xin Tian & Ling-Wei Fan, 2020. "Improving the Bass model’s predictive power through online reviews, search traffic and macroeconomic data," Annals of Operations Research, Springer, vol. 295(2), pages 881-922, December.
    7. Samuel Sale, R. & Mesak, Hani I. & Inman, R. Anthony, 2017. "A dynamic marketing-operations interface model of new product updates," European Journal of Operational Research, Elsevier, vol. 257(1), pages 233-242.
    8. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    9. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    10. Liangfei Qiu & Yili (Kevin) Hong & Andrew Whinston, 2022. "Special Issue of Production and Operations Management “Social Technologies in Operations”," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 868-869, February.
    11. Dazhou Lei & Hao Hu & Dongyang Geng & Jianshen Zhang & Yongzhi Qi & Sheng Liu & Zuo‐Jun Max Shen, 2023. "New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 655-673, February.
    12. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    13. Marion Debruyne & David J. Reibstein, 2005. "Competitor See, Competitor Do: Incumbent Entry in New Market Niches," Marketing Science, INFORMS, vol. 24(1), pages 55-66, December.
    14. Jonathan Lee & Peter Boatwright & Wagner A. Kamakura, 2003. "A Bayesian Model for Prelaunch Sales Forecasting of Recorded Music," Management Science, INFORMS, vol. 49(2), pages 179-196, February.
    15. Krishnan, Trichy V. & Seetharaman, P.B. “Seethu” & Vakratsas, Demetrios, 2012. "The multiple roles of interpersonal communication in new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(3), pages 292-305.
    16. Govert Bijwaard, 2010. "Regularity in individual shopping trips: implications for duration models in marketing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1931-1945.
    17. Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
    18. Fok, Dennis & Paap, Richard & Franses, Philip Hans, 2012. "Modeling dynamic effects of promotion on interpurchase times," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3055-3069.
    19. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
    20. Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:5:p:2067-2083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.