IDEAS home Printed from https://ideas.repec.org/a/spr/jecrev/v71y2020i4d10.1007_s42973-019-00030-x.html
   My bibliography  Save this article

How much do consumers know about the quality of products? Evidence from the diaper market

Author

Listed:
  • Andrew T. Ching

    (Johns Hopkins University)

  • Tülin Erdem

    (New York University)

  • Michael P. Keane

    (University of New South Wales)

Abstract

To measure the extent of incomplete information about brand qualities faced by consumers, recent research in marketing and economics has extended traditional static choice models to explicitly allow for consumer learning. These models tend to be complicated and make stringent assumptions such as Bayesian updating. In this paper, we provide a simpler alternative method to measure how much consumers know about the quality of quasi-durable products. Our key insight is that for products that depreciate over time and require repeated purchases, individuals’ observed inter-purchase spells provide another measure of brand qualities in terms of durability. This is simply because the higher the durability, the longer a product can last in general, and hence its observed inter-purchase spells should also be longer. Based on this argument, we propose an empirical framework to estimate both the perceived brand quality (based on revealed preference data) and brand durability (based on brand-specific inter-purchase spells) and apply it to a scanner panel dataset for diapers. Our estimates allow us to compare these two measures of qualities and infer the extent of incomplete information faced by parents. With our results, we can address questions such as: Do parents make the right choice in the diapers category? Can they save some money by switching from a national brand to a store brand or the other way around? How much savings can they get?

Suggested Citation

  • Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
  • Handle: RePEc:spr:jecrev:v:71:y:2020:i:4:d:10.1007_s42973-019-00030-x
    DOI: 10.1007/s42973-019-00030-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42973-019-00030-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42973-019-00030-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Igal Hendel & Aviv Nevo, 2006. "Measuring the Implications of Sales and Consumer Inventory Behavior," Econometrica, Econometric Society, vol. 74(6), pages 1637-1673, November.
    2. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2017. "Empirical Models of Learning Dynamics: A Survey of Recent Developments," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 223-257, Springer.
    3. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    4. Tat Chan & Chakravarthi Narasimhan & Ying Xie, 2013. "Treatment Effectiveness and Side Effects: A Model of Physician Learning," Management Science, INFORMS, vol. 59(6), pages 1309-1325, June.
    5. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    6. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    7. Peter M. Guadagni & John D. C. Little, 2008. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 27(1), pages 29-48, 01-02.
    8. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    9. Seetharaman, P B & Chintagunta, Pradeep K, 2003. "The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 368-382, July.
    10. Qiang Liu & Thomas J. Steenburgh & Sachin Gupta, 2015. "The Cross Attributes Flexible Substitution Logit: Uncovering Category Expansion and Share Impacts of Marketing Instruments," Marketing Science, INFORMS, vol. 34(1), pages 144-159, January.
    11. S. Sriram & Pradeep K. Chintagunta & Puneet Manchanda, 2015. "Service Quality Variability and Termination Behavior," Management Science, INFORMS, vol. 61(11), pages 2739-2759, November.
    12. Pakes, Ariel S, 1986. "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks," Econometrica, Econometric Society, vol. 54(4), pages 755-784, July.
    13. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    14. Andrew Ching & Tülin Erdem & Michael Keane, 2009. "The price consideration model of brand choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 393-420, April.
    15. Michael D. Grubb & Matthew Osborne, 2015. "Cellular Service Demand: Biased Beliefs, Learning, and Bill Shock," American Economic Review, American Economic Association, vol. 105(1), pages 234-271, January.
    16. Kristiaan Helsen & David C. Schmittlein, 1993. "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models," Marketing Science, INFORMS, vol. 12(4), pages 395-414.
    17. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    18. Dennis Fok & Richard Paap, 2009. "Modeling category‐level purchase timing with brand‐level marketing variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 469-489, April.
    19. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    20. Bharat N. Anand & Ron Shachar, 2011. "Advertising, the matchmaker," RAND Journal of Economics, RAND Corporation, vol. 42(2), pages 205-245, June.
    21. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    22. Ann van Ackere & Diane J. Reyniers, 1995. "Trade-ins and Introductory Offers in a Monopoly," RAND Journal of Economics, The RAND Corporation, vol. 26(1), pages 58-74, Spring.
    23. Andrew T. Ching & Masakazu Ishihara, 2012. "Measuring the Informative and Persuasive Roles of Detailing on Prescribing Decisions," Management Science, INFORMS, vol. 58(7), pages 1374-1387, July.
    24. Tülin Erdem & Susumu Imai & Michael Keane, 2003. "Brand and Quantity Choice Dynamics Under Price Uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 1(1), pages 5-64, March.
    25. Tülin Erdem & Michael P. Keane & Baohong Sun, 2008. "A Dynamic Model of Brand Choice When Price and Advertising Signal Product Quality," Marketing Science, INFORMS, vol. 27(6), pages 1111-1125, 11-12.
    26. Andrew Ching & Masakazu Ishihara, 2010. "The effects of detailing on prescribing decisions under quality uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 8(2), pages 123-165, June.
    27. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    28. Tülin Erdem & Michael Katz & Baohong Sun, 2010. "A simple test for distinguishing between internal reference price theories," Quantitative Marketing and Economics (QME), Springer, vol. 8(3), pages 303-332, September.
    29. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    30. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    31. Hai Che & Tülin Erdem & T. Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    32. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    33. Daniel A. Ackerberg, 2003. "Advertising, learning, and consumer choice in experience good markets: an empirical examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(3), pages 1007-1040, August.
    34. Alison Jing Xu & Robert S. Wyer Jr., 2007. "The Effect of Mind-Sets on Consumer Decision Strategies," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 556-566, June.
    35. Chintagunta, Pradeep K & Prasad, Alok R, 1998. "An Empirical Investigation of the "Dynamic McFadden" Model of Purchase Timing and Brand Choice: Implications for Market Structure," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 2-12, January.
    36. Hai Che & Tülin Erdem & T. Sabri Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    37. Peter M. Guadagni & John D. C. Little, 2008. "Commentary—A Logit Model of Brand Choice Calibrated on Scanner Data: A 25th Anniversary Perspective," Marketing Science, INFORMS, vol. 27(1), pages 26-28, 01-02.
    38. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    39. Ackerberg, Daniel A, 2001. "Empirically Distinguishing Informative and Prestige Effects of Advertising," RAND Journal of Economics, The RAND Corporation, vol. 32(2), pages 316-333, Summer.
    40. Nitin Mehta & Xinlei (Jack) Chen & Om Narasimhan, 2008. "Informing, Transforming, and Persuading: Disentangling the Multiple Effects of Advertising on Brand Choice Decisions," Marketing Science, INFORMS, vol. 27(3), pages 334-355, 05-06.
    41. Eric T. Anderson & Duncan I. Simester, 1998. "The Role of Sale Signs," Marketing Science, INFORMS, vol. 17(2), pages 139-155.
    42. Wiktor L. Adamowicz & Joffre D. Swait, 2013. "Are Food Choices Really Habitual? Integrating Habits, Variety-seeking, and Compensatory Choice in a Utility-maximizing Framework," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 17-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shervin Shahrokhi Tehrani & Andrew T. Ching, 2024. "A Heuristic Approach to Explore: The Value of Perfect Information," Management Science, INFORMS, vol. 70(5), pages 3200-3224, May.
    2. Andrew T. Ching & Matthew Osborne, 2020. "Identification and Estimation of Forward-Looking Behavior: The Case of Consumer Stockpiling," Marketing Science, INFORMS, vol. 39(4), pages 707-726, July.
    3. Jialie Chen & Vithala R. Rao, 2020. "A Dynamic Model of Rational Addiction with Stockpiling and Learning: An Empirical Examination of E-cigarettes," Management Science, INFORMS, vol. 66(12), pages 5886-5905, December.
    4. Minjung Kwon & Tülin Erdem & Masakazu Ishihara, 2023. "Counter-cyclical price promotion: Capturing seasonal changes in stockpiling and endogenous consumption," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 437-492, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    2. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    3. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    4. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    5. Andrew T. Ching & Hyunwoo Lim, 2020. "A Structural Model of Correlated Learning and Late-Mover Advantages: The Case of Statins," Management Science, INFORMS, vol. 66(3), pages 1095-1123, March.
    6. van Ewijk, Bernadette J. & Gijsbrechts, Els & Steenkamp, Jan-Benedict E.M., 2022. "The dark side of innovation: How new SKUs affect brand choice in the presence of consumer uncertainty and learning," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 967-987.
    7. Andrew Ching & Tülin Erdem & Michael Keane, 2009. "The price consideration model of brand choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 393-420, April.
    8. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2017. "Empirical Models of Learning Dynamics: A Survey of Recent Developments," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 223-257, Springer.
    9. Xu, Yan, 2017. "Essays on preference formation and home production," Other publications TiSEM b028fd7e-53ba-4ff6-97eb-4, Tilburg University, School of Economics and Management.
    10. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    11. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.
    12. Michał Kot, 2022. "An agent-based model of consumer choice. An evaluation of the strategy of pricing and advertising," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 73-95.
    13. Shervin Shahrokhi Tehrani & Andrew T. Ching, 2024. "A Heuristic Approach to Explore: The Value of Perfect Information," Management Science, INFORMS, vol. 70(5), pages 3200-3224, May.
    14. Haijing Hao & Rema Padman & Baohong Sun & Rahul Telang, 2019. "Modeling social learning on consumers’ long-term usage of a mobile technology: a Bayesian estimation of a Bayesian learning model," Electronic Commerce Research, Springer, vol. 19(1), pages 1-21, March.
    15. Kohei Kawaguchi & Kosuke Uetake & Yasutora Watanabe, 2021. "Designing Context-Based Marketing: Product Recommendations Under Time Pressure," Management Science, INFORMS, vol. 67(9), pages 5642-5659, September.
    16. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    17. Jie Bai, 2016. "Melons as Lemons: Asymmetric Information, Consumer Learning and Seller Reputation," Natural Field Experiments 00540, The Field Experiments Website.
    18. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    19. Hai Che & Tülin Erdem & T. Sabri Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    20. Minjung Kwon & Tülin Erdem & Masakazu Ishihara, 2023. "Counter-cyclical price promotion: Capturing seasonal changes in stockpiling and endogenous consumption," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 437-492, December.

    More about this item

    Keywords

    Incomplete information; Product quality; Efficiency unit; Quasi-durable goods; Brand choice; Inter-purchase spells; Inventory;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth
    • L68 - Industrial Organization - - Industry Studies: Manufacturing - - - Appliances; Furniture; Other Consumer Durables
    • M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecrev:v:71:y:2020:i:4:d:10.1007_s42973-019-00030-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.