Author
Listed:
- Pan Li
(Scheller College of Business, Georgia Institute of Technology, Atlanta, Georgia 30332)
- Alexander Tuzhilin
(Stern School of Business, New York University, New York, New York 10012)
Abstract
Variety seekers are those customers who easily get bored with the products they purchased before and, therefore, prefer new and fresh content to expand their horizons. Despite its prevalence, variety-seeking behavior is hardly studied in recommendation applications because of various limitations in existing variety-seeking measures. To fill the research gap, we present a variety-seeking framework in this paper to measure the level of variety-seeking behavior of customers in recommendations based on their consumption records. We validate the effectiveness of our framework through user questionnaire studies conducted at Alibaba, where our variety-seeking measures match well with consumers’ self-reported levels of their variety-seeking behaviors. Furthermore, we present a recommendation framework that combines the identified variety-seeking levels with unexpected recommender systems in the data mining literature to address consumers’ heterogenous desire for product variety, in which we provide more unexpected product recommendations to variety-seeking consumers and vice versa. Through off-line experiments on three different recommendation scenarios and a large-scale online controlled experiment at a major video-streaming platform, we demonstrate that those models following our recommendation framework significantly increase various business performance metrics and generate tangible economic impact for the company. Our findings lead to important managerial implications to better understand consumers’ variety-seeking behaviors and design recommender systems. As a result, the best-performing model in our proposed frameworks has been deployed by the company to serve all consumers on the video-streaming platform.
Suggested Citation
Pan Li & Alexander Tuzhilin, 2024.
"When Variety Seeking Meets Unexpectedness: Incorporating Variety-Seeking Behaviors into Design of Unexpected Recommender Systems,"
Information Systems Research, INFORMS, vol. 35(3), pages 1257-1273, September.
Handle:
RePEc:inm:orisre:v:35:y:2024:i:3:p:1257-1273
DOI: 10.1287/isre.2021.0053
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:35:y:2024:i:3:p:1257-1273. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.