IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v20y2010i3p269-283.html
   My bibliography  Save this article

Die Prognose von Serviceintervallen mit der Hazard-Raten-Analyse – Ergebnisse einer empirischen Studie im Automobilmarkt

Author

Listed:
  • Marko Sarstedt
  • Sebastian Scharf
  • Alexander Thamm
  • Michael Wolff

Abstract

Mit dem After Sales-Geschäft generieren die deutschen Automobilbauer etwa die Hälfte ihrer Gewinne. Gerade vor dem Hintergrund der aktuellen gesamtwirtschaftlichen Entwicklungen, wovon insbesondere das Neuwagengeschäft betroffen ist, erscheinen Anstrengungen zur Optimierung der kundenindividuellen Ansprache im Service-, Teile- und Wartungsgeschäft aussichtsreich zu sein. Als Voraussetzung dafür kann das Wissen über die kundenindividuellen Serviceintervalle als entscheidender Wettbewerbsvorteil gesehen werden, denn nur hiermit lassen sich Kunden auch zielgerichtet ansprechen und potenzielle Abwanderungen vermeiden. Genau an diesem Punkt knüpft dieser Beitrag an, indem mit der Hazard-Raten-Analyse ein wissenschaftlich fundiertes und praktikables Verfahren zur Prognose kundenindividueller Serviceintervalle illustriert wird. Da dieses im betriebswirtschaftlichen Kontext ohnehin sehr junge Analyseverfahren bislang überwiegend im FMCG (Fast Moving Consumer Goods)-Bereich auf Scannerdaten zum Einsatz kam, kann dieser Beitrag als Leitfaden für eine Erweiterung im Bereich langlebiger Konsum- und Investitionsgüter gesehen werden. Die Ergebnisse zeigen, dass der Anteil korrekt geschätzter Serviceintervalle die einfache lineare Fortschreibung, die bis dato das Standardverfahren zur Prognose von Serviceintervallen darstellt, um über 20% übertrifft bzw. die Prognosegenauigkeit von ±73 Tagen auf ±38 Tage gesteigert werden kann. Das Erfolgspotenzial einer kundenindividuellen Direktansprache lässt sich mit dieser substanziellen Verbesserung der zugrunde liegenden Informationsbasis erheblich steigern. Aus der Verbesserung der Prognosegenauigkeit auf kundenindividueller Ebene (Mikroebene) resultiert schließlich auch auf der Makroebene (Unternehmensplanung- und steuerung) eine erhöhte Planungssicherheit. Copyright Springer-Verlag 2010

Suggested Citation

  • Marko Sarstedt & Sebastian Scharf & Alexander Thamm & Michael Wolff, 2010. "Die Prognose von Serviceintervallen mit der Hazard-Raten-Analyse – Ergebnisse einer empirischen Studie im Automobilmarkt," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(3), pages 269-283, April.
  • Handle: RePEc:spr:metrik:v:20:y:2010:i:3:p:269-283
    DOI: 10.1007/s00187-010-0086-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00187-010-0086-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00187-010-0086-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dipak C. Jain & Naufel J. Vilcassim, 1991. "Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach," Marketing Science, INFORMS, vol. 10(1), pages 1-23.
    2. Buckinx, Wouter & Van den Poel, Dirk, 2005. "Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting," European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
    3. Jeongwen Chiang & Ching-Fan Chung & Emily Cremers, 2001. "Promotions and the pattern of grocery shopping time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(7), pages 801-819.
    4. Pradeep K. Chintagunta, 1998. "Inertia and Variety Seeking in a Model of Brand-Purchase Timing," Marketing Science, INFORMS, vol. 17(3), pages 253-270.
    5. Seetharaman, P B & Chintagunta, Pradeep K, 2003. "The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 368-382, July.
    6. P. B. Seetharaman, 2004. "The Additive Risk Model for Purchase Timing," Marketing Science, INFORMS, vol. 23(2), pages 234-242, March.
    7. Kristiaan Helsen & David C. Schmittlein, 1993. "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models," Marketing Science, INFORMS, vol. 12(4), pages 395-414.
    8. Jan Roelf Bult & Tom Wansbeek, 1995. "Optimal Selection for Direct Mail," Marketing Science, INFORMS, vol. 14(4), pages 378-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piening, J. & Ehrmann, T. & Meiseberg, B., 2013. "Competing risks for train tickets – An empirical investigation of customer behavior and performance in the railway industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 51(C), pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    2. Govert Bijwaard, 2010. "Regularity in individual shopping trips: implications for duration models in marketing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1931-1945.
    3. Konstantin Kogan & Avi Herbon & Beatrice Venturi, 2020. "Direct marketing of an event under hazards of customer saturation and forgetting," Annals of Operations Research, Springer, vol. 295(1), pages 207-227, December.
    4. Meade, Nigel & Islam, Towhidul, 2010. "Using copulas to model repeat purchase behaviour - An exploratory analysis via a case study," European Journal of Operational Research, Elsevier, vol. 200(3), pages 908-917, February.
    5. P. B. Seetharaman, 2004. "The Additive Risk Model for Purchase Timing," Marketing Science, INFORMS, vol. 23(2), pages 234-242, March.
    6. Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.
    7. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    8. Fok, Dennis & Paap, Richard & Franses, Philip Hans, 2012. "Modeling dynamic effects of promotion on interpurchase times," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3055-3069.
    9. Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.
    10. Dennis Fok & Richard Paap, 2009. "Modeling category‐level purchase timing with brand‐level marketing variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 469-489, April.
    11. Romana Khan & Michael Lewis & Vishal Singh, 2009. "Dynamic Customer Management and the Value of One-to-One Marketing," Marketing Science, INFORMS, vol. 28(6), pages 1063-1079, 11-12.
    12. Bijwaard, Govert E. & Franses, Philip Hans & Paap, Richard, 2006. "Modeling Purchases as Repeated Events," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 487-502, October.
    13. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    14. Yang, Yupin & Shi, Mengze, 2011. "Rise and fall of stars: Investigating the evolution of star status in professional team sports," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 352-366.
    15. Vishal P. Singh & Karsten T. Hansen & Robert C. Blattberg, 2006. "Market Entry and Consumer Behavior: An Investigation of a Wal-Mart Supercenter," Marketing Science, INFORMS, vol. 25(5), pages 457-476, September.
    16. Ryosuke Igari & Takahiro Hoshino, 2018. "A Bayesian Gamma Frailty Model Using the Sum of Independent Random Variables: Application of the Estimation of an Interpurchase Timing Model," Keio-IES Discussion Paper Series 2018-021, Institute for Economics Studies, Keio University.
    17. Marion Debruyne & David J. Reibstein, 2005. "Competitor See, Competitor Do: Incumbent Entry in New Market Niches," Marketing Science, INFORMS, vol. 24(1), pages 55-66, December.
    18. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    19. Danijel Bratina & Armand Faganel, 2023. "Using Supervised Machine Learning Methods for RFM Segmentation: A Casino Direct Marketing Communication Case," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 35(1), pages 7-22.
    20. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:20:y:2010:i:3:p:269-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.