IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7087-d1130894.html
   My bibliography  Save this article

Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects

Author

Listed:
  • Natei Ermias Benti

    (Computational Data Science Program, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia)

  • Mesfin Diro Chaka

    (Computational Data Science Program, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia)

  • Addisu Gezahegn Semie

    (Computational Data Science Program, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia)

Abstract

This article presents a review of current advances and prospects in the field of forecasting renewable energy generation using machine learning (ML) and deep learning (DL) techniques. With the increasing penetration of renewable energy sources (RES) into the electricity grid, accurate forecasting of their generation becomes crucial for efficient grid operation and energy management. Traditional forecasting methods have limitations, and thus ML and DL algorithms have gained popularity due to their ability to learn complex relationships from data and provide accurate predictions. This paper reviews the different approaches and models that have been used for renewable energy forecasting and discusses their strengths and limitations. It also highlights the challenges and future research directions in the field, such as dealing with uncertainty and variability in renewable energy generation, data availability, and model interpretability. Finally, this paper emphasizes the importance of developing robust and accurate renewable energy forecasting models to enable the integration of RES into the electricity grid and facilitate the transition towards a sustainable energy future.

Suggested Citation

  • Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7087-:d:1130894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jose Manuel Barrera & Alejandro Reina & Alejandro Maté & Juan Carlos Trujillo, 2020. "Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    2. Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    3. Renström, Niklas & Bangalore, Pramod & Highcock, Edmund, 2020. "System-wide anomaly detection in wind turbines using deep autoencoders," Renewable Energy, Elsevier, vol. 157(C), pages 647-659.
    4. Girum Ayalneh Tiruye & Abreham Tesfaye Besha & Yedilfana Setarge Mekonnen & Natei Ermias Benti & Gebrehiwet Abrham Gebreslase & Ramato Ashu Tufa, 2021. "Opportunities and Challenges of Renewable Energy Production in Ethiopia," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    5. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Shamshirband, Shahaboddin & Mohammadi, Kasra & Yee, Por Lip & Petković, Dalibor & Mostafaeipour, Ali, 2015. "A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1031-1042.
    7. Li, Jiaming & Ward, John K. & Tong, Jingnan & Collins, Lyle & Platt, Glenn, 2016. "Machine learning for solar irradiance forecasting of photovoltaic system," Renewable Energy, Elsevier, vol. 90(C), pages 542-553.
    8. Rehman, Shafiqur & Mohandes, Mohamed, 2008. "Artificial neural network estimation of global solar radiation using air temperature and relative humidity," Energy Policy, Elsevier, vol. 36(2), pages 571-576, February.
    9. Daniel Vassallo & Raghavendra Krishnamurthy & Thomas Sherman & Harindra J. S. Fernando, 2020. "Analysis of Random Forest Modeling Strategies for Multi-Step Wind Speed Forecasting," Energies, MDPI, vol. 13(20), pages 1-19, October.
    10. Wu, Zhong-Qiang & Jia, Wen-Jing & Zhao, Li-Ru & Wu, Chang-Han, 2016. "Maximum wind power tracking based on cloud RBF neural network," Renewable Energy, Elsevier, vol. 86(C), pages 466-472.
    11. Piyal Ekanayake & Amila T. Peiris & J. M. Jeevani W. Jayasinghe & Upaka Rathnayake, 2021. "Development of Wind Power Prediction Models for Pawan Danavi Wind Farm in Sri Lanka," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, June.
    12. Akram, M. Waqar & Li, Guiqiang & Jin, Yi & Chen, Xiao & Zhu, Changan & Zhao, Xudong & Khaliq, Abdul & Faheem, M. & Ahmad, Ashfaq, 2019. "CNN based automatic detection of photovoltaic cell defects in electroluminescence images," Energy, Elsevier, vol. 189(C).
    13. Qian, Cheng & Xu, Binghui & Chang, Liang & Sun, Bo & Feng, Qiang & Yang, Dezhen & Ren, Yi & Wang, Zili, 2021. "Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries," Energy, Elsevier, vol. 227(C).
    14. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    15. Sharma, Vishal & Yang, Dazhi & Walsh, Wilfred & Reindl, Thomas, 2016. "Short term solar irradiance forecasting using a mixed wavelet neural network," Renewable Energy, Elsevier, vol. 90(C), pages 481-492.
    16. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    17. Zeng, Jianwu & Qiao, Wei, 2013. "Short-term solar power prediction using a support vector machine," Renewable Energy, Elsevier, vol. 52(C), pages 118-127.
    18. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    19. Fu, Guoyin, 2018. "Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system," Energy, Elsevier, vol. 148(C), pages 269-282.
    20. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    21. Hu, Shuai & Xiang, Yue & Huo, Da & Jawad, Shafqat & Liu, Junyong, 2021. "An improved deep belief network based hybrid forecasting method for wind power," Energy, Elsevier, vol. 224(C).
    22. Essa Alhamer & Addison Grigsby & Rydge Mulford, 2022. "The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States," Energies, MDPI, vol. 15(20), pages 1-14, October.
    23. Dong-Dong Yuan & Ming Li & Heng-Yi Li & Cheng-Jian Lin & Bing-Xiang Ji, 2022. "Wind Power Prediction Method: Support Vector Regression Optimized by Improved Jellyfish Search Algorithm," Energies, MDPI, vol. 15(17), pages 1-19, September.
    24. Alizamir, Meysam & Kim, Sungwon & Kisi, Ozgur & Zounemat-Kermani, Mohammad, 2020. "A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions," Energy, Elsevier, vol. 197(C).
    25. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    26. Cherif, Hakima & Benakcha, Abdelhamid & Laib, Ismail & Chehaidia, Seif Eddine & Menacer, Arezky & Soudan, Bassel & Olabi, A.G., 2020. "Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor," Energy, Elsevier, vol. 212(C).
    27. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    28. Muzhou Hou & Tianle Zhang & Futian Weng & Mumtaz Ali & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2018. "Global Solar Radiation Prediction Using Hybrid Online Sequential Extreme Learning Machine Model," Energies, MDPI, vol. 11(12), pages 1-19, December.
    29. Hu, Qinghua & Zhang, Rujia & Zhou, Yucan, 2016. "Transfer learning for short-term wind speed prediction with deep neural networks," Renewable Energy, Elsevier, vol. 85(C), pages 83-95.
    30. Ning Li & Fuxing He & Wentao Ma, 2019. "Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p -Power Error Loss," Energies, MDPI, vol. 12(4), pages 1-19, February.
    31. Gangqiang Li & Huaizhi Wang & Shengli Zhang & Jiantao Xin & Huichuan Liu, 2019. "Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach," Energies, MDPI, vol. 12(13), pages 1-17, July.
    32. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    33. Eric Hillebrand & Marcelo Medeiros, 2010. "The Benefits of Bagging for Forecast Models of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 571-593.
    34. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    35. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    36. Yang, Wenguang & Liu, Chao & Jiang, Dongxiang, 2018. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 127(C), pages 230-241.
    37. Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
    38. Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
    39. Hao, Xiaochen & Guo, Tongtong & Huang, Gaolu & Shi, Xin & Zhao, Yantao & Yang, Yue, 2020. "Energy consumption prediction in cement calcination process: A method of deep belief network with sliding window," Energy, Elsevier, vol. 207(C).
    40. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    41. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    42. Yuan, Zhi & Wang, Weiqing & Wang, Haiyun & Mizzi, Scott, 2020. "Combination of cuckoo search and wavelet neural network for midterm building energy forecast," Energy, Elsevier, vol. 202(C).
    43. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
    44. Lledó, Ll. & Torralba, V. & Soret, A. & Ramon, J. & Doblas-Reyes, F.J., 2019. "Seasonal forecasts of wind power generation," Renewable Energy, Elsevier, vol. 143(C), pages 91-100.
    45. Fekri, Mohammad Navid & Patel, Harsh & Grolinger, Katarina & Sharma, Vinay, 2021. "Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network," Applied Energy, Elsevier, vol. 282(PA).
    46. Amith Khandakar & Muhammad E. H. Chowdhury & Monzure- Khoda Kazi & Kamel Benhmed & Farid Touati & Mohammed Al-Hitmi & Antonio Jr S. P. Gonzales, 2019. "Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar," Energies, MDPI, vol. 12(14), pages 1-19, July.
    47. Han, Yongming & Fan, Chenyu & Geng, Zhiqiang & Ma, Bo & Cong, Di & Chen, Kai & Yu, Bin, 2020. "Energy efficient building envelope using novel RBF neural network integrated affinity propagation," Energy, Elsevier, vol. 209(C).
    48. Sun, Xianke & Wang, Gaoliang & Xu, Liuyang & Yuan, Honglei & Yousefi, Nasser, 2021. "Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm," Energy, Elsevier, vol. 237(C).
    49. Chia-Sheng Tu & Wen-Chang Tsai & Chih-Ming Hong & Whei-Min Lin, 2022. "Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization," Energies, MDPI, vol. 15(18), pages 1-20, September.
    50. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Seon Young Jang & Byung Tae Oh & Eunsung Oh, 2024. "A Deep Learning-Based Solar Power Generation Forecasting Method Applicable to Multiple Sites," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    3. Ameni Boumaiza, 2024. "A Blockchain-Based Scalability Solution with Microgrids Peer-to-Peer Trade," Energies, MDPI, vol. 17(4), pages 1-18, February.
    4. Osman Akbulut & Muhammed Cavus & Mehmet Cengiz & Adib Allahham & Damian Giaouris & Matthew Forshaw, 2024. "Hybrid Intelligent Control System for Adaptive Microgrid Optimization: Integration of Rule-Based Control and Deep Learning Techniques," Energies, MDPI, vol. 17(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    2. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.
    4. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
    5. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    6. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    8. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    9. Salcedo-Sanz, Sancho & Deo, Ravinesh C. & Cornejo-Bueno, Laura & Camacho-Gómez, Carlos & Ghimire, Sujan, 2018. "An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia," Applied Energy, Elsevier, vol. 209(C), pages 79-94.
    10. Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
    11. Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
    12. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    13. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    14. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.
    15. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    16. Duan, Jiandong & Wang, Peng & Ma, Wentao & Tian, Xuan & Fang, Shuai & Cheng, Yulin & Chang, Ying & Liu, Haofan, 2021. "Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network," Energy, Elsevier, vol. 214(C).
    17. Meysam Alizamir & Kaywan Othman Ahmed & Jalal Shiri & Ahmad Fakheri Fard & Sungwon Kim & Salim Heddam & Ozgur Kisi, 2023. "A New Insight for Daily Solar Radiation Prediction by Meteorological Data Using an Advanced Artificial Intelligence Algorithm: Deep Extreme Learning Machine Integrated with Variational Mode Decomposit," Sustainability, MDPI, vol. 15(14), pages 1-35, July.
    18. Niu, Dongxiao & Sun, Lijie & Yu, Min & Wang, Keke, 2022. "Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model," Energy, Elsevier, vol. 254(PA).
    19. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    20. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7087-:d:1130894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.