IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11275-d1197859.html
   My bibliography  Save this article

A New Insight for Daily Solar Radiation Prediction by Meteorological Data Using an Advanced Artificial Intelligence Algorithm: Deep Extreme Learning Machine Integrated with Variational Mode Decomposition Technique

Author

Listed:
  • Meysam Alizamir

    (Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran)

  • Kaywan Othman Ahmed

    (Department of Civil Engineering, Faculty of Engineering, Tishk International University, Sulaimani 46001, Iraq)

  • Jalal Shiri

    (Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran)

  • Ahmad Fakheri Fard

    (Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran)

  • Sungwon Kim

    (Department of Railroad Construction and Safety Engineering, Dongyang University, Yeongju 36040, Republic of Korea)

  • Salim Heddam

    (Faculty of Science, Agronomy Department, Hydraulics Division, University 20 Août 1955, Route El Hadaik BP 26, Skikda 21000, Algeria)

  • Ozgur Kisi

    (Department of Civil Engineering, Luebeck University of Applied Sciences, 23562 Lübeck, Germany
    Department of Civil Engineering, Ilia State University, 0162 Tbilisi, Georgia)

Abstract

Reliable and precise estimation of solar energy as one of the green, clean, renewable and inexhaustible types of energies can play a vital role in energy management, especially in developing countries. Also, solar energy has less impact on the earth’s atmosphere and environment and can help to lessen the negative effects of climate change by lowering the level of emissions of greenhouse gas. This study developed thirteen different artificial intelligence models, including multivariate adaptive regression splines (MARS), extreme learning machine (ELM), Kernel extreme learning machine (KELM), online sequential extreme learning machine (OSELM), optimally pruned extreme learning machine (OPELM), outlier robust extreme learning machine (ORELM), deep extreme learning machine (DELM), and their versions combined with variational mode decomposition (VMD) as integrated models (VMD-DELM, VMD-ORELM, VMD-OPELM, VMD-OSELM, VMD-KELM, and VMD-ELM), for solar radiation estimation in Kurdistan region, Iraq. The daily meteorological data from 2017 to 2018 were used to implement suggested artificial models at Darbandikhan and Dukan stations, Iraq. The input parameters included daily data for maximum temperature (MAXTEMP), minimum temperature (MINTEMP), maximum relative humidity (MAXRH), minimum relative humidity (MINRH), sunshine duration (SUNDUR), wind speed (WINSPD), evaporation (EVAP), and cloud cover (CLOUDCOV). The results show that the proposed VMD-DELM algorithm considerably enhanced the simulation accuracy of standalone models’ daily solar radiation prediction, with average improvement in terms of RMSE of 13.3%, 20.36%, 25.1%, 27.1%, 34.17%, 38.64%, and 48.25% for Darbandikhan station and 5.22%, 10.01%, 10.26%, 21.01%, 29.7%, 35.8%, and 40.33% for Dukan station, respectively. The outcomes of this study reveal that the VMD-DELM two-stage model performed superiorly to the other approaches in predicting daily solar radiation by considering climatic predictors at both stations.

Suggested Citation

  • Meysam Alizamir & Kaywan Othman Ahmed & Jalal Shiri & Ahmad Fakheri Fard & Sungwon Kim & Salim Heddam & Ozgur Kisi, 2023. "A New Insight for Daily Solar Radiation Prediction by Meteorological Data Using an Advanced Artificial Intelligence Algorithm: Deep Extreme Learning Machine Integrated with Variational Mode Decomposit," Sustainability, MDPI, vol. 15(14), pages 1-35, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11275-:d:1197859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edna S. Solano & Payman Dehghanian & Carolina M. Affonso, 2022. "Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    4. Gabriel de Freitas Viscondi & Solange N. Alves-Souza, 2021. "Solar Irradiance Prediction with Machine Learning Algorithms: A Brazilian Case Study on Photovoltaic Electricity Generation," Energies, MDPI, vol. 14(18), pages 1-15, September.
    5. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    6. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    7. Alizamir, Meysam & Kim, Sungwon & Kisi, Ozgur & Zounemat-Kermani, Mohammad, 2020. "A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions," Energy, Elsevier, vol. 197(C).
    8. Fan, Junliang & Wu, Lifeng & Ma, Xin & Zhou, Hanmi & Zhang, Fucang, 2020. "Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions," Renewable Energy, Elsevier, vol. 145(C), pages 2034-2045.
    9. Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.
    10. Muzhou Hou & Tianle Zhang & Futian Weng & Mumtaz Ali & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2018. "Global Solar Radiation Prediction Using Hybrid Online Sequential Extreme Learning Machine Model," Energies, MDPI, vol. 11(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    2. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    3. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Ruan, Zhaohui & Sun, Weiwei & Yuan, Yuan & Tan, Heping, 2023. "Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Na Sun & Nan Zhang & Shuai Zhang & Tian Peng & Wei Jiang & Jie Ji & Xiangmiao Hao, 2022. "An Integrated Framework Based on an Improved Gaussian Process Regression and Decomposition Technique for Hourly Solar Radiation Forecasting," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    6. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
    7. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Ma, Lei & Chen, Bolong, 2023. "A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results," Energy, Elsevier, vol. 271(C).
    8. Guijo-Rubio, D. & Durán-Rosal, A.M. & Gutiérrez, P.A. & Gómez-Orellana, A.M. & Casanova-Mateo, C. & Sanz-Justo, J. & Salcedo-Sanz, S. & Hervás-Martínez, C., 2020. "Evolutionary artificial neural networks for accurate solar radiation prediction," Energy, Elsevier, vol. 210(C).
    9. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    10. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
    11. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
    12. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    13. Yinghao Chen & Xiaoliang Xie & Tianle Zhang & Jiaxian Bai & Muzhou Hou, 2020. "A deep residual compensation extreme learning machine and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 986-999, September.
    14. Wei Sun & Junjian Zhang, 2020. "Carbon Price Prediction Based on Ensemble Empirical Mode Decomposition and Extreme Learning Machine Optimized by Improved Bat Algorithm Considering Energy Price Factors," Energies, MDPI, vol. 13(13), pages 1-22, July.
    15. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    16. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    17. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    19. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    20. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11275-:d:1197859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.