IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v90y2016icp542-553.html
   My bibliography  Save this article

Machine learning for solar irradiance forecasting of photovoltaic system

Author

Listed:
  • Li, Jiaming
  • Ward, John K.
  • Tong, Jingnan
  • Collins, Lyle
  • Platt, Glenn

Abstract

Photovoltaic generation of electricity is an important renewable energy source, and large numbers of relatively small photovoltaic systems are proliferating around the world. Today it is widely acknowledged by power producers, utility companies and independent system operators that it is only through advanced forecasting, communications and control that these distributed resources can collectively provide a firm, dispatchable generation capacity to the electricity market. One of the challenges of realizing such a goal is the precise forecasting of the output of individual photovoltaic systems, which is affected by a lot of factors. This paper introduces our short-term solar irradiance forecasting algorithms based on machine learning methodologies, Hidden Markov Model and SVM regression. A series of experimental evaluations are presented to analyze the relative performance of the techniques in order to show the importance of these methodologies. The Matlab interface, the Weather Forecasting Platform, has been used for these evaluations. The experiments are performed using the dataset generated by Australian Bureau of Meteorology. The experimental results show that our machine learning based forecasting algorithms can precisely predict future 5–30 min solar irradiance under different weather conditions.

Suggested Citation

  • Li, Jiaming & Ward, John K. & Tong, Jingnan & Collins, Lyle & Platt, Glenn, 2016. "Machine learning for solar irradiance forecasting of photovoltaic system," Renewable Energy, Elsevier, vol. 90(C), pages 542-553.
  • Handle: RePEc:eee:renene:v:90:y:2016:i:c:p:542-553
    DOI: 10.1016/j.renene.2015.12.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115305747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.12.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jiaming & Guo, Ying & Platt, Glenn & Ward, John K., 2013. "Renewable energy aggregation with intelligent battery controller," Renewable Energy, Elsevier, vol. 59(C), pages 220-228.
    2. Mellit, Adel & Kalogirou, Soteris A. & Drif, Mahmoud, 2010. "Application of neural networks and genetic algorithms for sizing of photovoltaic systems," Renewable Energy, Elsevier, vol. 35(12), pages 2881-2893.
    3. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
    2. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    3. Majid Hosseini & Satya Katragadda & Jessica Wojtkiewicz & Raju Gottumukkala & Anthony Maida & Terrence Lynn Chambers, 2020. "Direct Normal Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 13(15), pages 1-15, July.
    4. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    5. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    6. Hugo Gaspar Hernandez-Palma & Jonny Rafael Plaza Alvarado & Jesús Enrique García Guiliany & Guilherme Luiz Dotto & Claudete Gindri Ramos, 2024. "Implications of Machine Learning in the Generation of Renewable Energies in Latin America from a Globalized Vision: A Systematic Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 1-10, March.
    7. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-step solar irradiation prediction based on weather forecast and generative deep learning model," Renewable Energy, Elsevier, vol. 188(C), pages 637-650.
    8. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Chibuzor N. Obiora & Ali N. Hasan & Ahmed Ali, 2023. "Predicting Solar Irradiance at Several Time Horizons Using Machine Learning Algorithms," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    10. Fei Mei & Yi Pan & Kedong Zhu & Jianyong Zheng, 2018. "A Hybrid Online Forecasting Model for Ultrashort-Term Photovoltaic Power Generation," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    11. Vera Wendler-Bosco & Charles Nicholson, 2022. "Modeling the economic impact of incoming tropical cyclones using machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 487-518, January.
    12. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
    13. Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
    14. Amith Khandakar & Muhammad E. H. Chowdhury & Monzure- Khoda Kazi & Kamel Benhmed & Farid Touati & Mohammed Al-Hitmi & Antonio Jr S. P. Gonzales, 2019. "Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar," Energies, MDPI, vol. 12(14), pages 1-19, July.
    15. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    16. Hanany Tolba & Nouha Dkhili & Julien Nou & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2020. "Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study," Energies, MDPI, vol. 13(16), pages 1-23, August.
    17. Sharma, Amandeep & Kakkar, Ajay, 2018. "Forecasting daily global solar irradiance generation using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2254-2269.
    18. Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
    19. Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
    20. Nespoli, Alfredo & Niccolai, Alessandro & Ogliari, Emanuele & Perego, Giovanni & Collino, Elena & Ronzio, Dario, 2022. "Machine Learning techniques for solar irradiation nowcasting: Cloud type classification forecast through satellite data and imagery," Applied Energy, Elsevier, vol. 305(C).
    21. Arumugham, Dinesh Rajan & Rajendran, Parvathy, 2021. "Modelling global solar irradiance for any location on earth through regression analysis using high-resolution data," Renewable Energy, Elsevier, vol. 180(C), pages 1114-1123.
    22. N. Yogambal Jayalakshmi & R. Shankar & Umashankar Subramaniam & I. Baranilingesan & Alagar Karthick & Balasubramaniam Stalin & Robbi Rahim & Aritra Ghosh, 2021. "Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting," Energies, MDPI, vol. 14(9), pages 1-23, April.
    23. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    24. Mariaud, Arthur & Acha, Salvador & Ekins-Daukes, Ned & Shah, Nilay & Markides, Christos N., 2017. "Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings," Applied Energy, Elsevier, vol. 199(C), pages 466-478.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    2. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
    3. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    4. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    5. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. John Boland & Sleiman Farah & Lei Bai, 2022. "Forecasting of Wind and Solar Farm Output in the Australian National Electricity Market: A Review," Energies, MDPI, vol. 15(1), pages 1-18, January.
    7. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    8. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    10. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    11. Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
    12. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    13. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    14. Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
    15. Louis Desportes & Inbar Fijalkow & Pierre Andry, 2021. "Deep Reinforcement Learning for Hybrid Energy Storage Systems: Balancing Lead and Hydrogen Storage," Energies, MDPI, vol. 14(15), pages 1-22, August.
    16. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    17. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    18. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    19. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    20. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:90:y:2016:i:c:p:542-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.