IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p205-d1560707.html
   My bibliography  Save this article

Solar Energy Forecasting Framework Using Prophet Based Machine Learning Model: An Opportunity to Explore Solar Energy Potential in Muscat Oman

Author

Listed:
  • Mazhar Baloch

    (Department of Electrical Engineering & Computer Science, College of Engineering, A’Sharqiyah University, Ibra 400, Oman)

  • Mohamed Shaik Honnurvali

    (Faculty of Engineering & Technology, Muscat University, Muscat 113, Oman)

  • Adnan Kabbani

    (Department of Electrical Engineering & Computer Science, College of Engineering, A’Sharqiyah University, Ibra 400, Oman)

  • Touqeer Ahmed

    (Department of Electrical Engineering & Computer Science, College of Engineering, A’Sharqiyah University, Ibra 400, Oman)

  • Sohaib Tahir Chauhdary

    (Department of Electrical and Computer Engineering, College of Engineering, Dhofar University, Salalah 201, Oman)

  • Muhammad Salman Saeed

    (Multan Electric Power Company, Punjab 60000, Pakistan)

Abstract

The unpredictable nature of renewable energy sources, such as wind and solar, makes them unreliable sources of energy for the power system. Nevertheless, with the advancement in the field of artificial intelligence (AI), one can predict the availability of solar and wind energy in the short, medium, and long term with fairly high accuracy. As such, this research work aims to develop a machine-learning-based framework for forecasting global horizontal irradiance (GHI) for Muscat, Oman. The proposed framework includes a data preprocessing stage, where the missing entries in the acquired data are imputed using the mean value imputation method. Afterward, data scaling is carried out to avoid the overfitting/underfitting of the model. Features such as the GHI cloudy sky index, the GHI clear sky index, global normal irradiance (GNI) for a cloudy sky, GNI for a clear sky, direct normal irradiance (DNI) for a cloudy sky, and DNI for a clear sky are extracted. After analyzing the correlation between the abovementioned features, model training and the testing procedure are initiated. In this research, different models, named Linear Regression (LR), Support Vector Machine (SVR), KNN Regressor, Decision Forest Regressor, XGBoost Regressor, Neural Network (NN), Autoregressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), Random Forest Regressor, Categorical Boosting (CatBoost), Deep Autoregressive (DeepAR), and Facebook Prophet, are trained and tested under both identical features and a training–testing ratio. The model evaluation metrics used in this study include the mean absolute error (MAE), the root mean squared error (RMSE), R 2 , and mean bias deviation (MBD). Based on the outcomes of this study, it is concluded that the Facebook Prophet model outperforms all of the other utilized conventional machine learning models, with MAE, RMSE, and R 2 values of 9.876, 18.762, and 0.991 for the cloudy conditions and 11.613, 19.951 and 0.988 for the clean weather conditions, respectively. The mentioned error values are the lowest among all of the studied models, which makes Facebook Prophet the most accurate solar irradiance forecasting model for Muscat, Oman.

Suggested Citation

  • Mazhar Baloch & Mohamed Shaik Honnurvali & Adnan Kabbani & Touqeer Ahmed & Sohaib Tahir Chauhdary & Muhammad Salman Saeed, 2025. "Solar Energy Forecasting Framework Using Prophet Based Machine Learning Model: An Opportunity to Explore Solar Energy Potential in Muscat Oman," Energies, MDPI, vol. 18(1), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:205-:d:1560707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aamer A. Shah & Almani A. Aftab & Xueshan Han & Mazhar Hussain Baloch & Mohamed Shaik Honnurvali & Sohaib Tahir Chauhdary, 2023. "Prediction Error-Based Power Forecasting of Wind Energy System Using Hybrid WT–ROPSO–NARMAX Model," Energies, MDPI, vol. 16(7), pages 1-15, April.
    2. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Osman Akbulut & Muhammed Cavus & Mehmet Cengiz & Adib Allahham & Damian Giaouris & Matthew Forshaw, 2024. "Hybrid Intelligent Control System for Adaptive Microgrid Optimization: Integration of Rule-Based Control and Deep Learning Techniques," Energies, MDPI, vol. 17(10), pages 1-23, May.
    3. Hanif, M.F. & Mi, J., 2024. "Harnessing AI for solar energy: Emergence of transformer models," Applied Energy, Elsevier, vol. 369(C).
    4. Ameni Boumaiza, 2024. "A Blockchain-Based Scalability Solution with Microgrids Peer-to-Peer Trade," Energies, MDPI, vol. 17(4), pages 1-18, February.
    5. Te Li & Mengze Zhang & Yan Zhou, 2024. "LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting," Papers 2410.15286, arXiv.org.
    6. Seon Young Jang & Byung Tae Oh & Eunsung Oh, 2024. "A Deep Learning-Based Solar Power Generation Forecasting Method Applicable to Multiple Sites," Sustainability, MDPI, vol. 16(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:205-:d:1560707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.