IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip3p1688-1700.html
   My bibliography  Save this article

Deep belief network based electricity load forecasting: An analysis of Macedonian case

Author

Listed:
  • Dedinec, Aleksandra
  • Filiposka, Sonja
  • Dedinec, Aleksandar
  • Kocarev, Ljupco

Abstract

A number of recent studies use deep belief networks (DBN) with a great success in various applications such as image classification and speech recognition. In this paper, a DBN made up from multiple layers of restricted Boltzmann machines is used for electricity load forecasting. The layer-by-layer unsupervised training procedure is followed by fine-tuning of the parameters by using a supervised back-propagation training method. Our DBN model was applied to short-term electricity load forecasting based on the Macedonian hourly electricity consumption data in the period 2008–2014. The obtained results are not only compared with the latest actual data, but furthermore, they are compared with the predicted data obtained from a typical feed-forward multi-layer perceptron neural network and with the forecasted data provided by the Macedonian system operator (MEPSO). The comparisons show that the applied model is not only suitable for hourly electricity load forecasting of the Macedonian electric power system, it actually provides superior results than the ones obtained using traditional methods. The mean absolute percentage error (MAPE) is reduced by up to 8.6% when using DBN, compared to the MEPSO data for the 24-h ahead forecasting, and the MAPE for daily peak forecasting is reduced by up to 21%.

Suggested Citation

  • Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p3:p:1688-1700
    DOI: 10.1016/j.energy.2016.07.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216310076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    2. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    3. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    4. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
    5. Hernández, Luis & Baladrón, Carlos & Aguiar, Javier M. & Carro, Belén & Sánchez-Esguevillas, Antonio & Lloret, Jaime, 2014. "Artificial neural networks for short-term load forecasting in microgrids environment," Energy, Elsevier, vol. 75(C), pages 252-264.
    6. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
    7. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    8. Dedinec, Aleksandar & Taseska-Gjorgievska, Verica & Markovska, Natasa & Pop-Jordanov, Jordan & Kanevce, Gligor & Goldstein, Gary & Pye, Steve & Taleski, Rubin, 2016. "Low emissions development pathways of the Macedonian energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1202-1211.
    9. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Lorena Calavia & Belén Carro & Antonio Sánchez-Esguevillas & Francisco Pérez & Ángel Fernández & Jaime Lloret, 2014. "Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems," Energies, MDPI, vol. 7(3), pages 1-23, March.
    10. Deihimi, Ali & Orang, Omid & Showkati, Hemen, 2013. "Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction," Energy, Elsevier, vol. 57(C), pages 382-401.
    11. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    12. Andersen, F.M. & Larsen, H.V. & Gaardestrup, R.B., 2013. "Long term forecasting of hourly electricity consumption in local areas in Denmark," Applied Energy, Elsevier, vol. 110(C), pages 147-162.
    13. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
    14. Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
    15. Huang, Yophy & Bor, Yunchang Jeffrey & Peng, Chieh-Yu, 2011. "The long-term forecast of Taiwan’s energy supply and demand: LEAP model application," Energy Policy, Elsevier, vol. 39(11), pages 6790-6803.
    16. Xiong, Ping-ping & Dang, Yao-guo & Yao, Tian-xiang & Wang, Zheng-xin, 2014. "Optimal modeling and forecasting of the energy consumption and production in China," Energy, Elsevier, vol. 77(C), pages 623-634.
    17. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    18. Jovanović, Saša & Savić, Slobodan & Bojić, Milorad & Djordjević, Zorica & Nikolić, Danijela, 2015. "The impact of the mean daily air temperature change on electricity consumption," Energy, Elsevier, vol. 88(C), pages 604-609.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    2. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    3. Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, vol. 156(C), pages 502-518.
    4. Yuchun Li & Yinghua Han & Jinkuan Wang & Qiang Zhao, 2018. "A MBCRF Algorithm Based on Ensemble Learning for Building Demand Response Considering the Thermal Comfort," Energies, MDPI, vol. 11(12), pages 1-20, December.
    5. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
    6. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "The Efficiency of Long-Term Forecasting Model on Final Energy Consumption in Thailand’s Petroleum Industries Sector: Enriching the LT-ARIMAXS Model under a Sustainability Policy," Energies, MDPI, vol. 11(8), pages 1-18, August.
    7. Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
    8. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    9. Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
    10. Günay, M. Erdem, 2016. "Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey," Energy Policy, Elsevier, vol. 90(C), pages 92-101.
    11. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    12. Gulay, Emrah & Sen, Mustafa & Akgun, Omer Burak, 2024. "Forecasting electricity production from various energy sources in Türkiye: A predictive analysis of time series, deep learning, and hybrid models," Energy, Elsevier, vol. 286(C).
    13. Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
    14. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    15. Akdi, Yılmaz & Gölveren, Elif & Okkaoğlu, Yasin, 2020. "Daily electrical energy consumption: Periodicity, harmonic regression method and forecasting," Energy, Elsevier, vol. 191(C).
    16. Nantian Huang & Guobo Lu & Dianguo Xu, 2016. "A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest," Energies, MDPI, vol. 9(10), pages 1-24, September.
    17. Ghofrani, M. & Ghayekhloo, M. & Arabali, A. & Ghayekhloo, A., 2015. "A hybrid short-term load forecasting with a new input selection framework," Energy, Elsevier, vol. 81(C), pages 777-786.
    18. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    19. Feng Jiang & Xue Yang & Shuyu Li, 2018. "Comparison of Forecasting India’s Energy Demand Using an MGM, ARIMA Model, MGM-ARIMA Model, and BP Neural Network Model," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    20. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p3:p:1688-1700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.