IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220317928.html
   My bibliography  Save this article

Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor

Author

Listed:
  • Cherif, Hakima
  • Benakcha, Abdelhamid
  • Laib, Ismail
  • Chehaidia, Seif Eddine
  • Menacer, Arezky
  • Soudan, Bassel
  • Olabi, A.G.

Abstract

This paper proposes an improved diagnosis method for early detection and localization of Inter-Turn Short Circuit (ITSC) faults in the stator winding of the induction motor (IM). The main advantages of the method are the simplicity, low cost, and accurate diagnosis of these types of faults such that it can detect and localize even a low number of shorted turns faults in the stator winding of the motor. This is achieved by using a novel indicator that is based on the Discrete Wavelet Energy Ratio (DWER) of three stator currents, with Artificial Neural Network (ANN). Three different models of typical neural networks, namely, Multi-Layer perceptron (MLP), radial basis function (RBF), and Elman Neural Network (ENN) based on Bayesian Regularized (BR) training algorithm are proposed for ITSC classification based on fault feature extraction using discrete wavelet transform. To test the effectiveness of the proposed method, several experimental tests were carried out under different operating conditions of the IM, which contains the healthy and the ITSC faults cases that have experimented under various loads and different numbers of shorted turns in the three phases of the motor. The obtained results proved that the DWER is an accurate and robust indicator to diagnose the ITSC fault, this is confirmed by ANN results which gave the best results with the Bayesian regularized Elman network model that has the highest performance with minimal error rate is 10−9.Consequently, the combination DWER-ENN has assured its ability to accurately detect high and even low numbers of the shorted turns and localize the defective phase even within various loads in the IM.

Suggested Citation

  • Cherif, Hakima & Benakcha, Abdelhamid & Laib, Ismail & Chehaidia, Seif Eddine & Menacer, Arezky & Soudan, Bassel & Olabi, A.G., 2020. "Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220317928
    DOI: 10.1016/j.energy.2020.118684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouzid, M. & Champenois, G., 2013. "An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 98-115.
    2. Ping Jiang & Shanshan Qin & Jie Wu & Beibei Sun, 2015. "Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, July.
    3. Brkovic, Aleksandar & Gajic, Dragoljub & Gligorijevic, Jovan & Savic-Gajic, Ivana & Georgieva, Olga & Di Gennaro, Stefano, 2017. "Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery," Energy, Elsevier, vol. 136(C), pages 63-71.
    4. Besma Bessam & Arezki Menacer & Mohamed Boumehraz & Hakima Cherif, 2017. "Wavelet transform and neural network techniques for inter-turn short circuit diagnosis and location in induction motor," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 478-488, January.
    5. N. Bessous & S. E. Zouzou & W. Bentrah & S. Sbaa & M. Sahraoui, 2018. "Diagnosis of bearing defects in induction motors using discrete wavelet transform," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 335-343, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    2. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    3. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.
    4. Jie Ma & Yingxue Li & Liying Wang & Jisheng Hu & Hua Li & Jiyou Fei & Lin Li & Geng Zhao, 2023. "Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest," Energies, MDPI, vol. 16(13), pages 1-17, June.
    5. Seif Eddine Chehaidia & Hakima Cherif & Musfer Alraddadi & Mohamed Ibrahim Mosaad & Abdelaziz Mahmoud Bouchelaghem, 2022. "Experimental Diagnosis of Broken Rotor Bar Faults in Induction Motors at Low Slip via Hilbert Envelope and Optimized Subtractive Clustering Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 15(18), pages 1-22, September.
    6. Noman Shabbir & Lauri Kütt & Bilal Asad & Muhammad Jawad & Muhammad Naveed Iqbal & Kamran Daniel, 2021. "Spectrum Analysis for Condition Monitoring and Fault Diagnosis of Ventilation Motor: A Case Study," Energies, MDPI, vol. 14(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swapnil K. Gundewar & Prasad V. Kane, 2022. "Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2876-2894, December.
    2. Lu, Shibao & Zhang, Xiaoling & Shang, Yizi & Li, Wei & Skitmore, Martin & Jiang, Shuli & Xue, Yangang, 2018. "Improving Hilbert–Huang transform for energy-correlation fluctuation in hydraulic engineering," Energy, Elsevier, vol. 164(C), pages 1341-1350.
    3. He, Deqiang & Liu, Chenyu & Jin, Zhenzhen & Ma, Rui & Chen, Yanjun & Shan, Sheng, 2022. "Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning," Energy, Elsevier, vol. 239(PB).
    4. Muhammad Amir Khan & Bilal Asad & Karolina Kudelina & Toomas Vaimann & Ants Kallaste, 2022. "The Bearing Faults Detection Methods for Electrical Machines—The State of the Art," Energies, MDPI, vol. 16(1), pages 1-54, December.
    5. Shin, Won & Han, Jeongyun & Rhee, Wonjong, 2021. "AI-assistance for predictive maintenance of renewable energy systems," Energy, Elsevier, vol. 221(C).
    6. Salman Khalid & Jinwoo Song & Izaz Raouf & Heung Soo Kim, 2023. "Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of Intelligent Techniques," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
    7. Augusto Bianchini & Marco Pellegrini & Jessica Rossi, 2019. "Maintenance scheduling optimization for industrial centrifugal pumps," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 848-860, August.
    8. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    9. Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.
    10. Kuo Chi & Jianshe Kang & Fei Zhao & Long Liu, 2019. "An adaptive underdamped stochastic resonance based on NN and CS for bearing fault diagnosis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 437-452, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220317928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.