Energy consumption prediction in cement calcination process: A method of deep belief network with sliding window
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118256
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
- Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
- Fu, Guoyin, 2018. "Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system," Energy, Elsevier, vol. 148(C), pages 269-282.
- Scapino, Luca & Zondag, Herbert A. & Diriken, Jan & Rindt, Camilo C.M. & Van Bael, Johan & Sciacovelli, Adriano, 2019. "Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Shen, Weiguo & Liu, Yi & Yan, Bilan & Wang, Jing & He, Pengtao & Zhou, Congcong & Huo, Xujia & Zhang, Wuzong & Xu, Gelong & Ding, Qingjun, 2017. "Cement industry of China: Driving force, environment impact and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 618-628.
- Amber, K.P. & Ahmad, R. & Aslam, M.W. & Kousar, A. & Usman, M. & Khan, M.S., 2018. "Intelligent techniques for forecasting electricity consumption of buildings," Energy, Elsevier, vol. 157(C), pages 886-893.
- Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
- Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
- Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Oh, Jiyoung & Min, Daiki, 2024. "Prediction of energy consumption for manufacturing small and medium-sized enterprises (SMEs) considering industry characteristics," Energy, Elsevier, vol. 300(C).
- Rehman, Aniqa & Zhu, Jun-Jie & Segovia, Javier & Anderson, Paul R., 2022. "Assessment of deep learning and classical statistical methods on forecasting hourly natural gas demand at multiple sites in Spain," Energy, Elsevier, vol. 244(PA).
- Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
- Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
- Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
- Zhang, Guoqiang & Guo, Jifeng, 2020. "A novel ensemble method for hourly residential electricity consumption forecasting by imaging time series," Energy, Elsevier, vol. 203(C).
- Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Bedi, Jatin & Toshniwal, Durga, 2021. "Can electricity demand lead to air pollution? A spatio-temporal analysis of electricity demand with climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
- Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption," Applied Energy, Elsevier, vol. 236(C), pages 574-589.
- Fu, Guoyin, 2018. "Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system," Energy, Elsevier, vol. 148(C), pages 269-282.
- Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
- Amber, K.P. & Ahmad, R. & Aslam, M.W. & Kousar, A. & Usman, M. & Khan, M.S., 2018. "Intelligent techniques for forecasting electricity consumption of buildings," Energy, Elsevier, vol. 157(C), pages 886-893.
- Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
- Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
- Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
- Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
- Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
- Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
More about this item
Keywords
Deep belief network; Sliding window; Energy consumption prediction; Multiple-index prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313633. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.