IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15902-d987882.html
   My bibliography  Save this article

Diesel Spray: Development of Spray in Diesel Engine

Author

Listed:
  • Djati Wibowo Djamari

    (Mechanical Engineering Study Program, Sampoerna University, Jakarta 12780, Indonesia)

  • Muhammad Idris

    (PT Perusahaan Listrik Negara (Persero), Engineering and Technology Division, Jakarta 11420, Indonesia)

  • Permana Andi Paristiawan

    (Research Center for Metallurgy, National Research and Innovation Agency, South Tangerang 15314, Indonesia)

  • Muhammad Mujtaba Abbas

    (Department of Mechanical Engineering, University of Engineering and Technology (New Campus), Lahore 54890, Pakistan)

  • Olusegun David Samuel

    (Department of Mechanical Engineering, Federal University of Petroleum Resources, P.M.B 1221, Effurun 330102, Nigeria
    Department of Mechanical Engineering, University of South Africa, Science Campus, Private Bag X6, Florida 1709, South Africa)

  • Manzoore Elahi M. Soudagar

    (Department of Mechanical Engineering and University Centre for Research & Development, Chandigarh University, Mohali 140413, India
    Department of Mechanical Engineering, School of Technology, Glocal University, Delhi-Yamunotri Marg, SH-57, Mirzapur Pole, Saharanpur 247121, India)

  • Safarudin Gazali Herawan

    (Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia)

  • Davannendran Chandran

    (Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Abdulfatah Abdu Yusuf

    (Department of Mechanical Engineering, University of Liberia, Monrovia 1000, Liberia)

  • Hitesh Panchal

    (Department of Mechanical Engineering, Government Engineering College, Patan 384265, India)

  • Ibham Veza

    (Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

Abstract

Research and development in the internal combustion engine (ICE) has been growing progressively. Issues such as air pollution, fuel cost, and market competitiveness have driven the automotive industry to develop and manufacture automobiles that meet new regulation and customers’ needs. The diesel engine has some advantages over the gasoline or spark ignition engine, including higher engine efficiency, greater power output, as well as reliability. Since the early stage of the diesel engine’s development phase, the quest to obtain better atomization, proper fuel supply, and accurate timing control, have triggered numerous innovations. In the last two decades, owing to the development of optical technology, the visualization of spray atomization has been made possible using visual diagnostics techniques. This advancement has greatly improved research in spray evolution. Yet, a more comprehensive understanding related to these aspects has not yet been agreed upon. Diesel spray, in particular, is considered a complicated phenomenon to observe because of its high-speed, high pressure, as well as its high temperature working condition. Nevertheless, several mechanisms have been successfully explained using fundamental studies, providing several suggestions in the area, such as liquid atomization and two-phase spray flow. There are still many aspects that have not yet been agreed upon. This paper comprehensively reviews the current status of theoretical diesel spray and modelling, including some important numerical and experimental aspects.

Suggested Citation

  • Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15902-:d:987882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Wu & Xinyi Zhou & Tie Li, 2019. "Temporal Evolution of Split-Injected Fuel Spray at Elevated Chamber Pressures," Energies, MDPI, vol. 12(22), pages 1-23, November.
    2. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Yulin Chen & Songtao Liu & Xiaoyu Guo & Chaojie Jia & Xiaodong Huang & Yaodong Wang & Haozhong Huang, 2021. "Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE 3-4 Blends," Energies, MDPI, vol. 14(17), pages 1-24, September.
    4. Sun, Yubiao & Alkhedhair, Abdullah M. & Guan, Zhiqiang & Hooman, Kamel, 2018. "Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers," Energy, Elsevier, vol. 160(C), pages 678-692.
    5. Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
    6. Zhou, Yifan & Wei, Zhenhong & Zhu, Qitian & Cao, Yang & Zhang, Yuyin, 2022. "Quantitative characterization on cyclic variation of mixture formation for flash boiling sprays," Energy, Elsevier, vol. 257(C).
    7. Liu, Fushui & Li, Zhishuang & Wang, Ziman & Dai, Xiaoyu & He, Xu & Lee, Chia-Fon, 2018. "Microscopic study on diesel spray under cavitating conditions by injecting fuel into water," Applied Energy, Elsevier, vol. 230(C), pages 1172-1181.
    8. Venu, Harish & Raju, V. Dhana & Lingesan, S. & Elahi M Soudagar, Manzoore, 2021. "Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 215(PB).
    9. Song, Jingeun & Lee, Ziyoung & Song, Jaecheon & Park, Sungwook, 2018. "Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa," Energy, Elsevier, vol. 164(C), pages 512-522.
    10. Attia, Ali M.A. & Kulchitskiy, A.R. & Nour, Mohamed & El-Seesy, Ahmed I. & Nada, Sameh A., 2022. "The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition," Energy, Elsevier, vol. 239(PA).
    11. Biswal, Abinash & Kale, Rakesh & Balusamy, Saravanan & Banerjee, Raja & Kolhe, Pankaj, 2019. "Lemon peel oil as an alternative fuel for GDI engines: A spray characterization perspective," Renewable Energy, Elsevier, vol. 142(C), pages 249-263.
    12. Chen, Longfei & Li, Guangze & Huang, Dongqi & Zhang, Zhichao & Lu, Yiji & Yu, Xiaoli & Roskilly, Anthony Paul, 2019. "Experimental and numerical study on the initial tip structure evolution of diesel fuel spray under various injection and ambient pressures," Energy, Elsevier, vol. 186(C).
    13. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    14. Tian, Jinfang & Yu, Longguang & Xue, Rui & Zhuang, Shan & Shan, Yuli, 2022. "Global low-carbon energy transition in the post-COVID-19 era," Applied Energy, Elsevier, vol. 307(C).
    15. Battistoni, Michele & Grimaldi, Carlo Nazareno, 2012. "Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels," Applied Energy, Elsevier, vol. 97(C), pages 656-666.
    16. Gehmlich, R.K. & Mueller, C.J. & Ruth, D.J. & Nilsen, C.W. & Skeen, S.A. & Manin, J., 2018. "Using ducted fuel injection to attenuate or prevent soot formation in mixing-controlled combustion strategies for engine applications," Applied Energy, Elsevier, vol. 226(C), pages 1169-1186.
    17. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    2. Chen, Haiyan & Shi, Zhongjie & Liu, Fushui & Wu, Yue & Li, Yikai, 2022. "Non-monotonic change of ignition delay with injection pressure under low ambient temperature for the diesel spray combustion," Energy, Elsevier, vol. 243(C).
    3. Shin, Jisoo & Kim, Donghwan & Seo, Jeawon & Park, Sungwook, 2020. "Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle," Energy, Elsevier, vol. 205(C).
    4. Li, Yikai & Wang, Dongfang & Shi, Zhongjie & Chen, Haiyan & Liu, Fushui, 2021. "Environment-adaptive method to control intake preheating for diesel engines at cold-start conditions," Energy, Elsevier, vol. 227(C).
    5. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Lin, Jhe-Kai & Nurazaq, Warit Abi & Wang, Wei-Cheng, 2023. "The properties of sustainable aviation fuel I: Spray characteristics," Energy, Elsevier, vol. 283(C).
    7. Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.
    8. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    9. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    10. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    11. Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
    12. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Irfan Anjum Badruddin, 2021. "Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    13. Dong, Xianjing & Zhang, Xiaojuan & Zhang, Congcong & Bi, Chunyu, 2023. "Building sustainability education for green recovery in the energy resource sector: A cross country analysis," Resources Policy, Elsevier, vol. 81(C).
    14. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    15. Zhiqing Yu & Li Yang & Jianhui Zhao & Leonid Grekhov, 2024. "Research on Multi-Objective Optimization of High-Speed Solenoid Valve Drive Strategies under the Synergistic Effect of Dynamic Response and Energy Loss," Energies, MDPI, vol. 17(2), pages 1-18, January.
    16. Lejla Terzić, 2024. "An investigation of the interlinkages between green growth dimensions, the energy trilemma, and sustainable development goals: Evidence from G7 and E7 economies," Ekonomista, Polskie Towarzystwo Ekonomiczne, issue 1, pages 24-53.
    17. Chen, Jingyuan & Calabrese, Raffaella & Cowling, Marc, 2024. "Does energy efficiency of UK SMEs affect their access to finance?," Energy Economics, Elsevier, vol. 129(C).
    18. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    19. M.H.H. Ishak & Farzad Ismail & Sharzali Che Mat & M.Z. Abdullah & M.S. Abdul Aziz & M.Y. Idroas, 2019. "Numerical Analysis of Nozzle Flow and Spray Characteristics from Different Nozzles Using Diesel and Biofuel Blends," Energies, MDPI, vol. 12(2), pages 1-25, January.
    20. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15902-:d:987882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.