IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p165-d1559642.html
   My bibliography  Save this article

Standardizing the Ignition Delay Time Measurements of Rapid Compression Machine: An Inverse Application of the Livengood–Wu Integral Method

Author

Listed:
  • Zhonghao Zhao

    (Petroleum, Oil & Lubricants Department in Army Logistics Academy of PLA, Chongqing 401311, China
    State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yingtao Wu

    (Petroleum, Oil & Lubricants Department in Army Logistics Academy of PLA, Chongqing 401311, China
    State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The rapid compression machine measures ignition delay time at high pressures and low to intermediate temperatures. However, unavoidable facility effects, such as compression and heat loss, shift the measurements away from ideal (adiabatic and constant volume) values to varying extents. Consequently, the ignition delay times measured by different facilities can be in large deviations, especially for fuel mixtures without negative temperature coefficient behavior. To address this issue, this work proposes a standardization algorithm that correlates the measurements to the ideal ignition delay times. The algorithm applies the Livengood–Wu integral method inversely and adopts a Bayesian approach to optimize the correlation parameters. The ignition delay times of an ethanol mixture under distinct facility effects were further used to test the performance of this algorithm. The results show that the dispersed ignition delay times can be effectively standardized within 20%, facilitating the direct comparison of measurements from different facilities. By setting a proper residual target of the algorithm, reasonable standardization accuracy can be achieved. This method enables a significantly easier interpretation of the rapid compression machine experimental data and can be broadly applied to any fuel mixtures exhibiting single-stage ignition characteristics.

Suggested Citation

  • Zhonghao Zhao & Yingtao Wu, 2025. "Standardizing the Ignition Delay Time Measurements of Rapid Compression Machine: An Inverse Application of the Livengood–Wu Integral Method," Energies, MDPI, vol. 18(1), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:165-:d:1559642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Ji, Feifan & Meng, Shuo & Han, Zhiyu & Dong, Guangyu & Reitz, Rolf D., 2025. "Progress in knock combustion modeling of spark ignition engines," Applied Energy, Elsevier, vol. 378(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    2. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    3. Li, Menghan & Wei, Zhangning & Liu, Xiaori & Wang, Xiaoyan & Zhang, Qiang & Li, Zhenguo, 2021. "A numerical investigation on the effects of gaseous fuel composition in a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 217(C).
    4. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    5. Fekadu Mosisa Wako & Gianmaria Pio & Ernesto Salzano, 2020. "The Effect of Hydrogen Addition on Low-Temperature Combustion of Light Hydrocarbons and Alcohols," Energies, MDPI, vol. 13(15), pages 1-14, July.
    6. Chen, Haiyan & Shi, Zhongjie & Liu, Fushui & Wu, Yue & Li, Yikai, 2022. "Non-monotonic change of ignition delay with injection pressure under low ambient temperature for the diesel spray combustion," Energy, Elsevier, vol. 243(C).
    7. Yuxuan Zhao & Enhua Wang & Zhicheng Shi, 2022. "Numerical Investigation of the Ignition Delay Time of Kerosene Premixed Combustion in an SI Engine," Energies, MDPI, vol. 15(5), pages 1-15, February.
    8. Fu, Jianqin & Li, Hao & Sun, Xilei & Zhang, Guanjie, 2024. "Many-objective optimization for overall performance of an electric sport utility vehicle under multiple temperature conditions based on natural gradient boosting model," Energy, Elsevier, vol. 304(C).
    9. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    10. Zhong, Shenghui & Zhang, Fan & Jangi, Mehdi & Bai, Xue-Song & Yao, Mingfa & Peng, Zhijun, 2020. "Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime," Applied Energy, Elsevier, vol. 275(C).
    11. Li, Yikai & Wang, Dongfang & Shi, Zhongjie & Chen, Haiyan & Liu, Fushui, 2021. "Environment-adaptive method to control intake preheating for diesel engines at cold-start conditions," Energy, Elsevier, vol. 227(C).
    12. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    13. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    14. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    15. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    16. Yuxuan Zhao & Enhua Wang & Zhicheng Shi, 2023. "Effects of Hydrogen Addition on Premixed Combustion of Kerosene in SI Engine," Energies, MDPI, vol. 16(10), pages 1-18, May.
    17. Lin, Jhe-Kai & Nurazaq, Warit Abi & Wang, Wei-Cheng, 2023. "The properties of sustainable aviation fuel I: Spray characteristics," Energy, Elsevier, vol. 283(C).
    18. Zhou, Xinyi & Li, Tie & Yi, Ping, 2021. "The similarity ratio effects in design of scaled model experiments for marine diesel engines," Energy, Elsevier, vol. 231(C).
    19. Li, Dafang & Sun, Weifu & Luo, Zhenmin, 2023. "Methane deflagration promoted by enhancing ignition efficiency via hydrogen doping, with a view to fracturing shales," Energy, Elsevier, vol. 282(C).
    20. Zhou, Feng & Yan, Renxing & Li, Gang & Han, Weiqiang, 2024. "Experimental study on the effects of n-butanol and n-propanol on the spray and combustion characteristics of diesel/biodiesel blends in a constant volume combustion chamber," Renewable Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:165-:d:1559642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.