IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics036054422201711x.html
   My bibliography  Save this article

Quantitative characterization on cyclic variation of mixture formation for flash boiling sprays

Author

Listed:
  • Zhou, Yifan
  • Wei, Zhenhong
  • Zhu, Qitian
  • Cao, Yang
  • Zhang, Yuyin

Abstract

The cyclic variation characteristics of the fuel-air mixture formation are essential for the fuel economy and the operating stability of engines. In this work, the cyclic variations of flash boiling and non-flash sprays were investigated experimentally by ultraviolet–visible laser absorption-scattering (UV-LAS) and high-speed Mie scattering optical diagnostics. The cyclic variations in the spray morphology and the mass distributions of liquid/vapor phase of acetone were characterized, and the effects of fuel temperature (Tf, 55–200 °C) and injection pressure (Pinj, 5–35 MPa) on the cyclic variations were analyzed. It was found that variations in morphology (penetration varies ± 10%) and fuel concentration distributions are more significant for the flash boiling sprays than those for the non-flash sprays, and the variations increase with the spray development, especially after end of injection. The cyclic variations of vapor mass distribution (Mv) increases by 22% when superheat degree varies from −47.8 to 97.2 °C and is reduced by 61% when increasing Pinj from 5 MPa to 35 MPa for the flash boiling spray. This study can provide insightful analysis and quantitative data for evaluating the issues caused by cyclic variations of spray such as spray impingement, ignition unreliability and combustion instability.

Suggested Citation

  • Zhou, Yifan & Wei, Zhenhong & Zhu, Qitian & Cao, Yang & Zhang, Yuyin, 2022. "Quantitative characterization on cyclic variation of mixture formation for flash boiling sprays," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201711x
    DOI: 10.1016/j.energy.2022.124808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201711X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    2. Kapusta, Łukasz Jan, 2022. "Understanding the collapse of flash-boiling sprays formed by multi-hole injectors operating at low injection pressures," Energy, Elsevier, vol. 247(C).
    3. Zhou, Yifan & Qi, Wenyuan & Zhang, Yuyin, 2020. "Investigation on cyclic variation of diesel spray and a reconsideration of penetration model," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Daoan & Cai, Wenzhe & Li, Chunying & Lu, Jian, 2021. "Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger," Energy, Elsevier, vol. 234(C).
    2. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    3. Meng Ji & Zhijun Wu & Alessandro Ferrari & Lezhong Fu & Oscar Vento, 2023. "Experimental Investigation on Gasoline—Water Mixture Fuel Impingement Preparation Method and Spray Characteristics with High Injection Temperatures and Pressures," Energies, MDPI, vol. 16(16), pages 1-16, August.
    4. Kapusta, Łukasz Jan, 2022. "Understanding the collapse of flash-boiling sprays formed by multi-hole injectors operating at low injection pressures," Energy, Elsevier, vol. 247(C).
    5. Kaźmierski, Bartosz & Kapusta, Łukasz Jan, 2023. "The importance of individual spray properties in performance improvement of a urea-SCR system employing flash-boiling injection," Applied Energy, Elsevier, vol. 329(C).
    6. Chang, Mengzhao & Kim, Huijun & Zhou, Bo & Park, Suhan, 2023. "Spray collapse resistance of GDI injectors with different hole structures under flash boiling conditions," Energy, Elsevier, vol. 268(C).
    7. Qiu, Shuyi & Yao, Bowei & Wang, Shangning & Zhang, Weixuan & Hung, David L.S. & Xu, Min & Li, Xuesong, 2023. "Droplet characteristics of multi-plume flash boiling spray evaluation using SLIPI-LIEF/Mie planar imaging technique," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201711x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.