IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics036054422402454x.html
   My bibliography  Save this article

Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations

Author

Listed:
  • Lei, Jian
  • Chai, Sen
  • Tian, Guohong
  • Liu, Hua
  • Yang, Xiyu
  • Shi, Cheng

Abstract

Methanol, being one of the most promising carbon-neutral fuels, has the potential to enhance the fuel mixture homogeneity of gasoline rotary engines, thereby improving engine performance. This study, based on computational fluid dynamics model, investigates the in-cylinder flow, combustion, and emission characteristics under various methanol blending ratios, ignition timings, and equivalence ratios. At the methanol energy blending ratio of 10 %, a more extensive and efficient operating range is observed across different ignition timings and equivalence ratios, attributed to the higher diffusion and combustion rates. An increase in in-cylinder temperature enhances the complete conversion of HC. However, higher proportions of methanol are disadvantageous for the combustion process due to methanol's lower heat value and higher latent heat of vaporization. Thus, the optimal ignition timing was determined to be 30°EA BTDC. At this optimal ignition timing, the cylinder shows higher average turbulent kinetic energy and radical content compared to the ignition timing at 50° EA BTDC. Specifically, the concentrations of OH, H, and O free radicals increase by 12.40 %, 14.77 %, and 13.91 % respectively, leading to more complete initial flame kernel expansion. It is notable that emissions of CO, HC, and NOx are all reduced. The study further explores the influence of the equivalence ratio on the combustion process. At an equivalence ratio of 0.9, there is an earlier peak in the maximum cylinder pressure rise rate and the highest generation of O and OH, with a shorter main combustion period and concentrated heat release. This achieves economically viable operation for rotary engines, indicating a 2.122 % improvement in thermal efficiency and a reduction in fuel consumption to 375.537 g kW−1 h−1.

Suggested Citation

  • Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s036054422402454x
    DOI: 10.1016/j.energy.2024.132680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402454X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Cheng & Cheng, Tengfei & Yang, Xiyu & Zhang, Zheng & Duan, Ruiling & Li, Xujia, 2024. "Implementation of various injection rate shapes in an ammonia/diesel dual-fuel engine with special emphasis on combustion and emissions characteristics," Energy, Elsevier, vol. 304(C).
    2. Shi, Cheng & Chai, Sen & Di, Liming & Ji, Changwei & Ge, Yunshan & Wang, Huaiyu, 2023. "Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to wankel engine," Energy, Elsevier, vol. 263(PC).
    3. Shi, Cheng & Zhang, Zheng & Wang, Huaiyu & Wang, Jingyi & Cheng, Tengfei & Zhang, Liang, 2024. "Parametric analysis and optimization of the combustion process and pollutant performance for ammonia-diesel dual-fuel engines," Energy, Elsevier, vol. 296(C).
    4. Huayu Tian & Jun Wang & Ran Zhang & Yulin Zhang & Yan Su & Hao Yu & Bo Shen, 2023. "Experimental Study on Macroscopic Spray and Fuel Film Characteristics of E40 in a Constant Volume Chamber," Energies, MDPI, vol. 16(22), pages 1-13, November.
    5. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Pan, Jiaying & Wei, Haiqiao & Shu, Gequn & Pan, Mingzhang & Feng, Dengquan & Li, Nan, 2017. "LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine," Applied Energy, Elsevier, vol. 191(C), pages 183-192.
    7. Zeng, Yonghao & Fan, Baowei & Pan, Jianfeng & He, Ren & Fang, Jia & Salami, Hammed Adeniyi & Wu, Xin, 2022. "Research on the ignition strategy of a methanol/gasoline blends rotary engine using turbulent jet ignition mode," Energy, Elsevier, vol. 261(PA).
    8. Chen, Zhenbin & Wang, Li & Wei, Zhilong & Wang, Yu & Deng, Jiaojun, 2022. "Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil," Energy, Elsevier, vol. 244(PB).
    9. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    10. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Bao, Jianhui & Yang, Jinxin, 2019. "Numerical study on ignition amelioration of a hydrogen-enriched Wankel engine under lean-burn condition," Applied Energy, Elsevier, vol. 255(C).
    11. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    12. Canakci, Mustafa & Ozsezen, Ahmet Necati & Alptekin, Ertan & Eyidogan, Muharrem, 2013. "Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine," Renewable Energy, Elsevier, vol. 52(C), pages 111-117.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Cheng & Cheng, Tengfei & Yang, Xiyu & Zhang, Zheng & Duan, Ruiling & Li, Xujia, 2024. "Implementation of various injection rate shapes in an ammonia/diesel dual-fuel engine with special emphasis on combustion and emissions characteristics," Energy, Elsevier, vol. 304(C).
    2. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    3. Shi, Cheng & Zhang, Zheng & Wang, Huaiyu & Wang, Jingyi & Cheng, Tengfei & Zhang, Liang, 2024. "Parametric analysis and optimization of the combustion process and pollutant performance for ammonia-diesel dual-fuel engines," Energy, Elsevier, vol. 296(C).
    4. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    5. Chen, Haiyan & Shi, Zhongjie & Liu, Fushui & Wu, Yue & Li, Yikai, 2022. "Non-monotonic change of ignition delay with injection pressure under low ambient temperature for the diesel spray combustion," Energy, Elsevier, vol. 243(C).
    6. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    7. Li, Yikai & Wang, Dongfang & Shi, Zhongjie & Chen, Haiyan & Liu, Fushui, 2021. "Environment-adaptive method to control intake preheating for diesel engines at cold-start conditions," Energy, Elsevier, vol. 227(C).
    8. Suleyman Simsek & Bulent Ozdalyan, 2018. "Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI) Engine’s Performance and Emissions," Energies, MDPI, vol. 11(3), pages 1-13, March.
    9. Zou, Run & Li, Yuan & Liu, Jinxiang & Wang, Nana & Zeng, Qinghan & Li, Jiong, 2023. "Numerical study on the effects of spark strategies on knocking combustion in a downsized gasoline rotary engine," Energy, Elsevier, vol. 263(PD).
    10. Yang, Zhenghao & Du, Yang & Gao, Xu & Zhang, Zeqi & Geng, Qi & He, Guangyu, 2024. "Comparative analysis of combustion, thermodynamic and environmental performance of hydrogen-doping X-type rotary engines using single-ignitor and dual-ignitors under high-altitude condition," Energy, Elsevier, vol. 307(C).
    11. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Shen, Kai & Xu, Zishun & Zhu, Zhongpan & Yang, Linsen, 2022. "Combined effects of electric supercharger and LP-EGR on performance of turbocharged engine," Energy, Elsevier, vol. 244(PB).
    13. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    14. Zhiqing Yu & Li Yang & Jianhui Zhao & Leonid Grekhov, 2024. "Research on Multi-Objective Optimization of High-Speed Solenoid Valve Drive Strategies under the Synergistic Effect of Dynamic Response and Energy Loss," Energies, MDPI, vol. 17(2), pages 1-18, January.
    15. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    16. Süleyman Şimşek & Hasan Saygın & Bülent Özdalyan, 2020. "Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission," Energies, MDPI, vol. 13(7), pages 1-14, April.
    17. Dhamodaran, Gopinath & Esakkimuthu, Ganapathy Sundaram & Pochareddy, Yashwanth Kutti & Sivasubramanian, Harish, 2017. "Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine," Energy, Elsevier, vol. 125(C), pages 726-735.
    18. Song, Yue & Zhou, Yu & Zhao, Shuai & Du, Fa-rong & Li, Xue-yu & Zhu, Kun & Yan, Huan-song & Xu, Zheng & Ding, Shui-ting, 2024. "Cyclic coupling and working characteristics analysis of a novel combined cycle engine concept for aviation applications," Energy, Elsevier, vol. 301(C).
    19. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    20. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s036054422402454x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.