IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp1172-1181.html
   My bibliography  Save this article

Microscopic study on diesel spray under cavitating conditions by injecting fuel into water

Author

Listed:
  • Liu, Fushui
  • Li, Zhishuang
  • Wang, Ziman
  • Dai, Xiaoyu
  • He, Xu
  • Lee, Chia-Fon

Abstract

Cavitation is a phenomenon which can significantly enhance spray breakup and affect the mixture preparation by introducing air or vapour bubbles. Attempts were made to capture the bubbles due to cavitation by injecting fuel into water based on the difference of density and refraction between water and vapour bubbles apart from the attempts to directly visualize vapour bubbles in an enlarged transparent nozzle. Tests were carried out with the employment of highly resolved microscope and ultra-high speed camera. The spray morphology and primary breakup characteristics in the near field were also investigated. It was found that irregularly shaped bubbles due to cavitation under low pressure can be observed in the nozzle. The increase of injection pressure (thereby increase of velocity) could significantly prolong the bubbles. At the nozzle outlet, the significant variation of pressure prolonged air bubbles into “thread” before collapsing. Vapour bubbles after exiting the injector nozzle were very small and the resolution of 3 µm/pixel was insufficient to capture the bubbles through direct visualization. A tree-shaped spray tip with significant radial propagation was observed. The sucking-in of water when the needle started to lift, the flow regime and the strong water resistance were closely related to the formation of tree-shaped spray tip. In addition, although the increase of fuel temperature generally enhanced the atomization of spray, the primary breakup of spray during the initial stage and end stage when the spray velocity was low surprisingly deteriorated for hot fuel.

Suggested Citation

  • Liu, Fushui & Li, Zhishuang & Wang, Ziman & Dai, Xiaoyu & He, Xu & Lee, Chia-Fon, 2018. "Microscopic study on diesel spray under cavitating conditions by injecting fuel into water," Applied Energy, Elsevier, vol. 230(C), pages 1172-1181.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1172-1181
    DOI: 10.1016/j.apenergy.2018.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    2. Wang, Ziman & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou, 2017. "The influence of flash boiling conditions on spray characteristics with closely coupled split injection strategy," Applied Energy, Elsevier, vol. 187(C), pages 523-533.
    3. Wang, Ziman & Ding, Haichun & Ma, Xiao & Xu, Hongming & Wyszynski, Miroslaw L., 2016. "Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with split injection," Applied Energy, Elsevier, vol. 163(C), pages 105-117.
    4. Wang, Ziman & Ding, Haichun & Ma, Xiao & Xu, Hongming & Wyszynski, Miroslaw L., 2016. "Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with single injection," Applied Energy, Elsevier, vol. 165(C), pages 335-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    2. Liu, Yu & Yuan, Zhipeng & Ma, Yinjie & Fu, Jianqin & Huang, Ronghua & Liu, Jingping, 2019. "Analysis of spray combustion characteristics of diesel, biodiesel and their n-pentanol blends based on a one-dimensional semi-phenomenological model," Applied Energy, Elsevier, vol. 238(C), pages 996-1009.
    3. Wei, Yunpeng & Zhang, Hanwen & Fan, Liyun & Gu, Yuanqi & Leng, Xianyin & Deng, Yicheng & He, Zhixia, 2022. "Experimental study into the effects of stability between multiple injections on the internal flow and near field spray dynamics of a diesel nozzle," Energy, Elsevier, vol. 248(C).
    4. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ziman & Guo, Hengjie & Wang, Chongming & Xu, Hongming & Li, Yanfei, 2017. "Microscopic level study on the spray impingement process and characteristics," Applied Energy, Elsevier, vol. 197(C), pages 114-123.
    2. Wang, Ziman & Wang, Bo & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik, 2016. "Microscopic characterization of isooctane spray in the near field under flash boiling condition," Applied Energy, Elsevier, vol. 180(C), pages 598-606.
    3. Zhishuang Li & Ziman Wang & Haoyang Mo & Han Wu, 2022. "Effect of the Air Flow on the Combustion Process and Preheating Effect of the Intake Manifold Burner," Energies, MDPI, vol. 15(9), pages 1-17, April.
    4. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    5. Wang, Ziman & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou & Xu, Hongming, 2017. "Experimental characterization of closely coupled split isooctane sprays under flash boiling conditions," Applied Energy, Elsevier, vol. 193(C), pages 199-209.
    6. de la Garza, Oscar A. & Martínez-Martínez, S. & Avulapati, Madan Mohan & Pos, Radboud & Megaritis, Thanos & Ganippa, Lionel, 2021. "Biofuels and its spray interactions under pilot-main injection strategy," Energy, Elsevier, vol. 219(C).
    7. Wang, Ziman & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou, 2017. "The influence of flash boiling conditions on spray characteristics with closely coupled split injection strategy," Applied Energy, Elsevier, vol. 187(C), pages 523-533.
    8. G.M. Hasan Shahariar & Ock Taeck Lim, 2018. "A Study on Urea-Water Solution Spray-Wall Impingement Process and Solid Deposit Formation in Urea-SCR de-NO x System," Energies, MDPI, vol. 12(1), pages 1-18, December.
    9. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    10. Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Agarwal, Rashmi A. & Gupta, Tarun & Kumar Agarwal, Avinash, 2017. "Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application," Applied Energy, Elsevier, vol. 206(C), pages 1203-1213.
    11. Liao, Yujun & Dimopoulos Eggenschwiler, Panayotis & Rentsch, Daniel & Curto, Francesco & Boulouchos, Konstantinos, 2017. "Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems," Applied Energy, Elsevier, vol. 205(C), pages 964-975.
    12. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    13. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    14. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    15. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    16. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    17. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    18. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    19. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    20. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1172-1181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.