IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022672.html
   My bibliography  Save this article

Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach

Author

Listed:
  • Yaman, Hayri
  • Yesilyurt, Murat Kadir
  • Uslu, Samet

Abstract

Due to increasing air pollution and decreasing fuel reserves, the search for environmentally friendly fuels continues and a lot of time and money are spent in the experiments for these searches. Therefore, it is very important to be able to determine the optimal parameter levels for a fuel's use in the engine through several experiments. For this purpose, in this study, the design of experiments (DoE)-based response surface methodology (RSM) was used to determine the optimum compression ratio (CR), engine load, and 1-heptanol percentage in a spark ignition (SI) engine to obtain the best performance such as brake thermal efficiency (BTHE), brake specific fuel consumption (BSFC) and emission values such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbon (HC) and nitrogen oxide (NOx). The data required for the RSM model were obtained from the experiments performed at three different 1-heptanol percentages (0, 10%, and 20%), three different CRs (6.0:1, 8.0:1, and 10.0:1), and three different engine loads (4, 8, and 12 kg). Optimum operating parameters to achieve the best performance and emission values were determined as 8% 1-heptanol, 10.0:1 CR, and 6 kg engine load. The BTHE, BSFC, CO, CO2, HC, and NOx were found to be 26.03%, 0.32 kg/kWh, 0.56%, 15.07%, 182.54 ppm, and 676.16 ppm according to optimum working parameters, respectively. In addition, according to the validation study, the error rates between the optimum results and the experimental results were acceptable between 0.74% and 8.96%. Experimental results reveal that 10% 1-heptanol addition improved BTHE and BSFC by an average of 5% and 2.5%, respectively, but did not affect NOx much. With the addition of 20% 1-heptanol, the CO emission was improved by an average of 8.5%. In terms of HC and CO2, the effect of 1-heptanol was negative. By increasing the compression ratio to 10, BTHE, BSFC, CO, and HC were positively affected, while CO2 and NOx emissions were negatively affected. It is thought that this study will be a reference study since it provides optimum operating parameters of the engine when 1-heptanol will be used as an alternative fuel in the gasoline engine.

Suggested Citation

  • Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022672
    DOI: 10.1016/j.energy.2021.122019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    2. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    3. Biswal, Abinash & Kale, Rakesh & Balusamy, Saravanan & Banerjee, Raja & Kolhe, Pankaj, 2019. "Lemon peel oil as an alternative fuel for GDI engines: A spray characterization perspective," Renewable Energy, Elsevier, vol. 142(C), pages 249-263.
    4. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    5. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    6. Tian, Zhi & Zhen, Xudong & Wang, Yang & Liu, Daming & Li, Xiaoyan, 2020. "Combustion and emission characteristics of n-butanol-gasoline blends in SI direct injection gasoline engine," Renewable Energy, Elsevier, vol. 146(C), pages 267-279.
    7. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    8. Elfasakhany, Ashraf, 2018. "Exhaust emissions and performance of ternary iso-butanol–bio-methanol–gasoline and n-butanol–bio-ethanol–gasoline fuel blends in spark-ignition engines: Assessment and comparison," Energy, Elsevier, vol. 158(C), pages 830-844.
    9. Sun, Chunhua & Liu, Yu & Qiao, Xinqi & Ju, Dehao & Tang, Qing & Fang, Xiaoyuan & Zhou, Feng, 2020. "Experimental study of effects of exhaust gas recirculation on combustion, performance, and emissions of DME-biodiesel fueled engine," Energy, Elsevier, vol. 197(C).
    10. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    11. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    12. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice & Uslu, Gonca, 2021. "Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method," Energy, Elsevier, vol. 231(C).
    13. Thangavel, Venugopal & Momula, Sai Yashwanth & Gosala, Dheeraj Bharadwaj & Asvathanarayanan, Ramesh, 2016. "Experimental studies on simultaneous injection of ethanol–gasoline and n-butanol–gasoline in the intake port of a four stroke SI engine," Renewable Energy, Elsevier, vol. 91(C), pages 347-360.
    14. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uslu, Samet & Simsek, Suleyman & Simsek, Hatice, 2023. "RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends," Energy, Elsevier, vol. 266(C).
    2. Uslu, Samet & Celik, Mehmet, 2023. "Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uslu, Samet & Simsek, Suleyman & Simsek, Hatice, 2023. "RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends," Energy, Elsevier, vol. 266(C).
    2. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Muhammad Usman & Muhammad Ali Ijaz Malik & Tariq Nawaz Chaudhary & Fahid Riaz & Sohaib Raza & Muhammad Abubakar & Farrukh Ahmad Malik & Hafiz Muhammad Ahmad & Yasser Fouad & Muhammad Mujtaba Abbas & M, 2023. "Comparative Assessment of Ethanol and Methanol–Ethanol Blends with Gasoline in SI Engine for Sustainable Development," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    4. Juan E. Tibaquirá & José I. Huertas & Sebastián Ospina & Luis F. Quirama & José E. Niño, 2018. "The Effect of Using Ethanol-Gasoline Blends on the Mechanical, Energy and Environmental Performance of In-Use Vehicles," Energies, MDPI, vol. 11(1), pages 1-17, January.
    5. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    6. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    7. Naderi, Alireza & Qasemian, Ali & Shojaeefard, Mohammad Hasan & Samiezadeh, Saman & Younesi, Mostafa & Sohani, Ali & Hoseinzadeh, Siamak, 2021. "A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine," Energy, Elsevier, vol. 229(C).
    8. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    9. Li, Xiaoyan & Zhen, Xudong & Wang, Yang & Tian, Zhi, 2022. "Numerical comparative study on performance and emissions characteristics fueled with methanol, ethanol and methane in high compression spark ignition engine," Energy, Elsevier, vol. 254(PA).
    10. Al-Harbi, Ahmed A. & Alabduly, Abdullah J. & Alkhedhair, Abdullah M. & Alqahtani, Naif B. & Albishi, Miqad S., 2022. "Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol–gasoline blends enhanced with synthesis gas," Energy, Elsevier, vol. 238(PA).
    11. Yuce, Bahadir Erman & Oral, Faruk, 2024. "Multi objective optimization of emission and performance characteristics in a spark ignition engine with a novel hydrogen generator," Energy, Elsevier, vol. 289(C).
    12. Sathish Kumar, T. & Ashok, B. & Saravanan, B., 2023. "Calibration of flex-fuel operating parameters using grey relational analysis to enhance the output characteristics of ethanol powered direct injection SI engine," Energy, Elsevier, vol. 281(C).
    13. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice & Uslu, Gonca, 2021. "Multi-objective-optimization of process parameters of diesel engine fueled with biodiesel/2-ethylhexyl nitrate by using Taguchi method," Energy, Elsevier, vol. 231(C).
    14. Hua, Yan & Wang, Zhong & Li, Ruina & Liu, Shuai & Zhao, Yang & Qu, Lei & Mei, Deqing & Lv, Hui, 2022. "Experimental study on morphology, nanostructure and oxidation reactivity of particles in diesel engine with exhaust gas recirculation (EGR) burned with different alternative fuels," Energy, Elsevier, vol. 261(PA).
    15. Ganesha Thippeshnaik & Sajjal Basanna Prakash & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Olusegun David Samuel & Oguzhan Der & Ali Ercetin, 2023. "Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)," Energies, MDPI, vol. 16(18), pages 1-25, September.
    16. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ibegbu, Anayo Jerome & Tomomewo, Olusegun Stanley, 2023. "Evaluation of engine characteristics of a micro-gas turbine powered with JETA1 fuel mixed with Afzelia biodiesel and dimethyl ether (DME)," Renewable Energy, Elsevier, vol. 216(C).
    17. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    18. Janakiraman, S. & Lakshmanan, T. & Raghu, P., 2021. "Experimental investigative analysis of ternary (diesel + biodiesel + bio-ethanol) fuel blended with metal-doped titanium oxide nanoadditives tested on a diesel engine," Energy, Elsevier, vol. 235(C).
    19. Weiwei Shang & Xiumin Yu & Kehao Miao & Zezhou Guo & Huiying Liu & Xiaoxue Xing, 2023. "Research on Combustion and Emission Characteristics of a N-Butanol Combined Injection SI Engine," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    20. Nguyen, Dinh Duc & Moghaddam, Hesam & Pirouzfar, Vahid & Fayyazbakhsh, Ahmad & Su, Chia-Hung, 2021. "Improving the gasoline properties by blending butanol-Al2O3 to optimize the engine performance and reduce air pollution," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.