IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005731.html
   My bibliography  Save this article

Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass

Author

Listed:
  • Ahmed, Gaffer
  • Kishore, Nanda

Abstract

Co-feed pyrolysis is a thermochemical conversion process that entails the simultaneous or sequential decomposition of various feedstock in an oxygen-free environment, concurrently improving the quality of the end products. The technique is widely used to produce a range of valuable products, including biofuels, chemicals and biochar, capitalizing on the synergies between various feedstock. The current study focuses on the synergistic effects of co-feed pyrolysis of Erythrina indica (EI) and Azadirachta indica (AI) biomass at different co-feed ratios (EI:AI) of 1:4, 1:3, 1:2, 1:1, 2:1, 3:1 and 4:1 on weight basis. The reactions were carried out at a temperature of 600 °C under a pressure of 1 bar using nitrogen as inert atmosphere. The bio-oil yield produced through the co-feed pyrolysis reactions ranged from 29.51 to 32.40 % by weight, while the biochar and non-condensable gases yields ranged from 38.25 to 42.48 % and 26.90 to 30.73 % by weight, respectively. Positive synergistic effects of co-feed pyrolysis led to a notable enhancement in physicochemical properties of the fuel phase, especially by virtue of calorific value, density and presence of low mol. wt. components when compared to their individual counterparts. Specifically, the fuel phase obtained at 1:1 co-feed ratio exhibited the peak calorific value of 36.80 MJ/kg along with lowest density of 0.82 g/ml and pH of 3.58 which is the pinnacle accomplishment of this work; and comparable with commercial gasoline. Gas chromatography and mass spectroscopy of biofuels revealed alkanes, alkenes, alcohols, aromatics, esters, nitro compounds and organosilicons as their main compounds. Specific compounds, including cyclopentane, methyl-, 1-cyclohexyl-2-propen-1-ol and 1-pentene, 3-methyl, are the most significant compounds at co-feed ratio of 1:1. Biochar produced at co-feed ratio of 1:1 also depicted excellent physiochemical properties with the highest elemental carbon of 79.23 wt % and lowest oxygen and hydrogen contents of 18.49 wt % and 2.28 wt %, respectively with a maximum calorific value of 29.23 MJ/kg; which can be utilized as solid fuels. The biochar produced from the co-feed pyrolysis reactions also possesses highly porous structure which can be useful as a soil conditioner, carbon sequestration water filtration or wastewater treatment. Additionally, non-condensable gases composed of 7.45 vol % hydrogen, 34.26 vol % carbon monoxide, 21.32 vol % methane and 36.97 vol % carbon dioxide when co-feed ratio is 1:1.

Suggested Citation

  • Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005731
    DOI: 10.1016/j.renene.2024.120508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    2. Ahmed, Gaffer & Kishore, Nanda, 2023. "Fuel phase extraction from pyrolytic liquid of Azadirachta indica biomass followed by subsequent characterization of pyrolysis products," Renewable Energy, Elsevier, vol. 219(P1).
    3. Aghbashlo, Mortaza & Almasi, Fatemeh & Jafari, Ali & Nadian, Mohammad Hossein & Soltanian, Salman & Lam, Su Shiung & Tabatabaei, Meisam, 2021. "Describing biomass pyrolysis kinetics using a generic hybrid intelligent model: A critical stage in sustainable waste-oriented biorefineries," Renewable Energy, Elsevier, vol. 170(C), pages 81-91.
    4. Nawaz, Ahmad & Kumar, Pradeep, 2022. "Pyrolysis behavior of low value biomass (Sesbania bispinosa) to elucidate its bioenergy potential: Kinetic, thermodynamic and prediction modelling using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 257-270.
    5. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    6. Sun, Yifan & Li, Chao & Zhang, Shu & Li, Qiaoling & Gholizadeh, Mortaza & Wang, Yi & Hu, Song & Xiang, Jun & Hu, Xun, 2021. "Pyrolysis of soybean residue: Understanding characteristics of the products," Renewable Energy, Elsevier, vol. 174(C), pages 487-500.
    7. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    8. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    9. Tian, Jinfang & Yu, Longguang & Xue, Rui & Zhuang, Shan & Shan, Yuli, 2022. "Global low-carbon energy transition in the post-COVID-19 era," Applied Energy, Elsevier, vol. 307(C).
    10. Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.
    11. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Gaffer & Kishore, Nanda, 2023. "Fuel phase extraction from pyrolytic liquid of Azadirachta indica biomass followed by subsequent characterization of pyrolysis products," Renewable Energy, Elsevier, vol. 219(P1).
    2. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    3. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    4. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    5. Dong, Xianjing & Zhang, Xiaojuan & Zhang, Congcong & Bi, Chunyu, 2023. "Building sustainability education for green recovery in the energy resource sector: A cross country analysis," Resources Policy, Elsevier, vol. 81(C).
    6. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    7. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    8. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    9. Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
    10. Islam, Md. Monirul & Shahbaz, Muhammad & Ahmed, Faroque, 2024. "Robot race in geopolitically risky environment: Exploring the Nexus between AI-powered tech industrial outputs and energy consumption in Singapore," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    11. Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Wavelet entropy and complexity–entropy curves approach for energy commodity price predictability amid the transition to alternative energy sources," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    12. Mishra, Garima & Bhaskar, Thallada, 2022. "Insights into the decomposition kinetics of groundnut shell: An advanced isoconversional approach," Renewable Energy, Elsevier, vol. 196(C), pages 1-14.
    13. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    14. Gao, Ming, 2023. "The impacts of carbon trading policy on China's low-carbon economy based on county-level perspectives," Energy Policy, Elsevier, vol. 175(C).
    15. Tian, Jinfang & Sun, Siyang & Cao, Wei & Bu, Di & Xue, Rui, 2024. "Make every dollar count: The impact of green credit regulation on corporate green investment efficiency," Energy Economics, Elsevier, vol. 130(C).
    16. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
    17. Söyler, Nejmi & Goldfarb, Jillian L. & Ceylan, Selim & Saçan, Melek Türker, 2017. "Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae," Energy, Elsevier, vol. 120(C), pages 907-914.
    18. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    19. Casper Boongaling Agaton, 2022. "Will a Geopolitical Conflict Accelerate Energy Transition in Oil-Importing Countries? A Case Study of the Philippines from a Real Options Perspective," Resources, MDPI, vol. 11(6), pages 1-17, June.
    20. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.