IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15747-d984972.html
   My bibliography  Save this article

An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks

Author

Listed:
  • Morteza Nazari-Heris

    (College of Engineering, Lawrence Technological University, Southfield, MI 48075, USA)

  • Mehdi Abapour

    (Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666, Iran)

  • Behnam Mohammadi-Ivatloo

    (Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666, Iran)

Abstract

Electric vehicles (EVs) are predicted to be highly integrated into future smart grids considering their significant role in achieving a safe environment and sustainable transportation. The charging/discharging flexibility of EVs, which can be aggregated by an agent, provides the opportunity of participating in the demand-side management of energy networks. The individual participation of consumers at the system level would not be possible for two main reasons: (i) In general, their individual capacity is below the required minimum to participate in power system markets, and (ii) the number of market participants would be large, and thus the volume of individual transactions would be difficult to manage. In order to facilitate the interactions between consumers and the power grid, an aggregation agent would be required. The EV aggregation area and their integration challenges and impacts on electricity markets and distribution networks is investigated in much research studies from different planning and operation points of view. This paper aims to provide a comprehensive review and outlook on EV aggregation models in electrical energy systems. The authors aim to study the main objectives and contributions of recent papers and investigate the proposed models in such areas in detail. In addition, this paper discusses the primary considerations and challenging issues of EV aggregators reported by various research studies. In addition, the proposed research outlines the future trends around electric vehicle aggregators and their role in electrical energy systems.

Suggested Citation

  • Morteza Nazari-Heris & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15747-:d:984972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roham Torabi & Álvaro Gomes & F. Morgado-Dias, 2021. "Energy Transition on Islands with the Presence of Electric Vehicles: A Case Study for Porto Santo," Energies, MDPI, vol. 14(12), pages 1-24, June.
    2. Škugor, Branimir & Deur, Joško, 2015. "A novel model of electric vehicle fleet aggregate battery for energy planning studies," Energy, Elsevier, vol. 92(P3), pages 444-455.
    3. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    4. Zhu, Xianwen & Xia, Mingchao & Chiang, Hsiao-Dong, 2018. "Coordinated sectional droop charging control for EV aggregator enhancing frequency stability of microgrid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 210(C), pages 936-943.
    5. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    6. Homa Rashidizadeh-Kermani & Hamid Reza Najafi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets," Energies, MDPI, vol. 11(9), pages 1-20, September.
    7. Mingchao Xia & Qingying Lai & Yajiao Zhong & Canbing Li & Hsiao-Dong Chiang, 2016. "Aggregator-Based Interactive Charging Management System for Electric Vehicle Charging," Energies, MDPI, vol. 9(3), pages 1-14, March.
    8. Nazari-Heris, Morteza & Loni, Abdolah & Asadi, Somayeh & Mohammadi-ivatloo, Behnam, 2022. "Toward social equity access and mobile charging stations for electric vehicles: A case study in Los Angeles," Applied Energy, Elsevier, vol. 311(C).
    9. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    10. Perez-Diaz, Alvaro & Gerding, Enrico & McGroarty, Frank, 2018. "Coordination and payment mechanisms for electric vehicle aggregators," Applied Energy, Elsevier, vol. 212(C), pages 185-195.
    11. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    12. Škugor, Branimir & Deur, Joško, 2015. "Dynamic programming-based optimisation of charging an electric vehicle fleet system represented by an aggregate battery model," Energy, Elsevier, vol. 92(P3), pages 456-465.
    13. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    14. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    15. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing & Shahidehpour, Mohammad, 2021. "Two-stage robust distribution system operation by coordinating electric vehicle aggregator charging and load curtailments," Energy, Elsevier, vol. 226(C).
    17. Shojaabadi, Saeed & Talavat, Vahid & Galvani, Sadjad, 2022. "A game theory-based price bidding strategy for electric vehicle aggregators in the presence of wind power producers," Renewable Energy, Elsevier, vol. 193(C), pages 407-417.
    18. Moghaddam, Saeed Zolfaghari & Akbari, Tohid, 2018. "Network-constrained optimal bidding strategy of a plug-in electric vehicle aggregator: A stochastic/robust game theoretic approach," Energy, Elsevier, vol. 151(C), pages 478-489.
    19. Shafie-khah, Miadreza & Parsa Moghaddam, Mohsen & Sheikh-El-Eslami, Mohamad Kazem & Rahmani-Andebili, Mehdi, 2012. "Modeling of interactions between market regulations and behavior of plug-in electric vehicle aggregators in a virtual power market environment," Energy, Elsevier, vol. 40(1), pages 139-150.
    20. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    21. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
    22. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    23. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    24. Peng, Chao & Zou, Jianxiao & Lian, Lian & Li, Liying, 2017. "An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits," Applied Energy, Elsevier, vol. 190(C), pages 591-599.
    25. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    26. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    27. Saad Ullah Khan & Khawaja Khalid Mehmood & Zunaib Maqsood Haider & Muhammad Kashif Rafique & Muhammad Omer Khan & Chul-Hwan Kim, 2021. "Coordination of Multiple Electric Vehicle Aggregators for Peak Shaving and Valley Filling in Distribution Feeders," Energies, MDPI, vol. 14(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegazy Rezk & Mohammad Ali Abdelkareem & Samah Ibrahim Alshathri & Enas Taha Sayed & Mohamad Ramadan & Abdul Ghani Olabi, 2023. "Fuel Economy Energy Management of Electric Vehicles Using Harris Hawks Optimization," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    3. Seydali Ferahtia & Hegazy Rezk & Rania M. Ghoniem & Ahmed Fathy & Reem Alkanhel & Mohamed M. Ghonem, 2023. "Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Lei, Xiang & Yu, Hang & Shao, Ziyun & Jian, Linni, 2023. "Optimal bidding and coordinating strategy for maximal marginal revenue due to V2G operation: Distribution system operator as a key player in China's uncertain electricity markets," Energy, Elsevier, vol. 283(C).
    3. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
    4. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    5. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach," Energy, Elsevier, vol. 283(C).
    6. Jayalakshmi N. Sabhahit & Sanjana Satish Solanke & Vinay Kumar Jadoun & Hasmat Malik & Fausto Pedro García Márquez & Jesús María Pinar-Pérez, 2022. "Contingency Analysis of a Grid Connected EV's for Primary Frequency Control of an Industrial Microgrid Using Efficient Control Scheme," Energies, MDPI, vol. 15(9), pages 1-24, April.
    7. Saad Ullah Khan & Khawaja Khalid Mehmood & Zunaib Maqsood Haider & Muhammad Kashif Rafique & Chul-Hwan Kim, 2018. "A Bi-Level EV Aggregator Coordination Scheme for Load Variance Minimization with Renewable Energy Penetration Adaptability," Energies, MDPI, vol. 11(10), pages 1-28, October.
    8. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
    9. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    10. Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
    11. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    12. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    13. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    14. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    15. Liu, Hui & Huang, Kai & Wang, Ni & Qi, Junjian & Wu, Qiuwei & Ma, Shicong & Li, Canbing, 2019. "Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement," Applied Energy, Elsevier, vol. 240(C), pages 46-55.
    16. Homa Rashidizadeh-Kermani & Hamid Reza Najafi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets," Energies, MDPI, vol. 11(9), pages 1-20, September.
    17. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    18. Khaki, Behnam & Chu, Chicheng & Gadh, Rajit, 2019. "Hierarchical distributed framework for EV charging scheduling using exchange problem," Applied Energy, Elsevier, vol. 241(C), pages 461-471.
    19. Parinaz Aliasghari & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Ali Ahmadian & Ali Elkamel, 2020. "Goal Programming Application for Contract Pricing of Electric Vehicle Aggregator in Join Day-Ahead Market," Energies, MDPI, vol. 13(7), pages 1-12, April.
    20. Zeng, Bo & Sun, Bo & Wei, Xuan & Gong, Dunwei & Zhao, Dongbo & Singh, Chanan, 2020. "Capacity value estimation of plug-in electric vehicle parking-lots in urban power systems: A physical-social coupling perspective," Applied Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15747-:d:984972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.