IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p93-d1555849.html
   My bibliography  Save this article

Risk Preferences of EV Fleet Aggregators in Day-Ahead Market Bidding: Mean-CVaR Linear Programming Model

Author

Listed:
  • Izabela Zoltowska

    (The Institute of Control and Computation Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

Abstract

This paper introduces a mean profit- conditional value-at-risk (CVaR) model for purchasing electricity on the day-ahead market (DA) by electric vehicles fleet aggregator (EVA). EVA controls electric vehicles (EVs) during their workplace parking, enabling smart charging and cost savings by accessing market prices that are potentially lower than flat rates available during home charging. The proposed stochastic linear programming model leverages market price scenarios to optimize aggregated charging schedules, which serve as templates for constructing effective DA bidding curves. It integrates an aspiration/reservation-based formulation of the mean profit-risk criteria, specifically Conditional Value at Risk (CVaR) to address the EVA’s risk aversion. By incorporating interactive analysis, the framework ensures adaptive and robust charging schedules and bids tailored to the aggregator’s risk preferences. Its ability to balance profitability with risk is validated in case studies. This approach provides a practical and computationally efficient tool for EV aggregators of global companies that can benefit from the workplace charging their fleets thanks to buying energy in the DA market.

Suggested Citation

  • Izabela Zoltowska, 2024. "Risk Preferences of EV Fleet Aggregators in Day-Ahead Market Bidding: Mean-CVaR Linear Programming Model," Energies, MDPI, vol. 18(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:93-:d:1555849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/93/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/93/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:93-:d:1555849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.