IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12424-d1218083.html
   My bibliography  Save this article

Fuel Economy Energy Management of Electric Vehicles Using Harris Hawks Optimization

Author

Listed:
  • Hegazy Rezk

    (Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61111, Egypt)

  • Mohammad Ali Abdelkareem

    (Sustainable Energy and Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
    Chemical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt)

  • Samah Ibrahim Alshathri

    (Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Enas Taha Sayed

    (Chemical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt)

  • Mohamad Ramadan

    (School of Engineering, International University of Beirut BIU, Beirut P.O. Box 146404, Lebanon)

  • Abdul Ghani Olabi

    (Sustainable Energy and Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

Abstract

Fuel cell hybrid electric vehicles (FCEVs) have gained significant attention due to their environmentally friendly nature and competitive performance. These vehicles utilize a fuel cell system as the primary power source, with a secondary power source such as a battery pack or supercapacitor. An energy management strategy (EMS) for FCEVs is critical in optimizing power distribution among different energy sources, considering factors such as hydrogen consumption and efficiency. The proposed EMS presents an optimized external energy maximization strategy using the Harris Hawks Optimization to reduce hydrogen consumption and enhance the system’s efficiency. Through a comparative simulation using the Federal Test Procedure (FTP-75) for the city driving cycle, the performance of the proposed EMS was evaluated and compared to existing algorithms. The simulation results indicate that the proposed EMS outperforms other existing solutions in terms of fuel consumption reduction, with a potential reduction of 19.81%. Furthermore, the proposed energy management strategy also exhibited an increase in system efficiency of 0.09%. This improvement can contribute to reducing the reliance on fossil fuels and mitigating the negative environmental impacts associated with vehicle emissions.

Suggested Citation

  • Hegazy Rezk & Mohammad Ali Abdelkareem & Samah Ibrahim Alshathri & Enas Taha Sayed & Mohamad Ramadan & Abdul Ghani Olabi, 2023. "Fuel Economy Energy Management of Electric Vehicles Using Harris Hawks Optimization," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12424-:d:1218083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhifu Wang & Wei Luo & Song Xu & Yuan Yan & Limin Huang & Jingkai Wang & Wenmei Hao & Zhongyi Yang, 2023. "Electric Vehicle Lithium-Ion Battery Fault Diagnosis Based on Multi-Method Fusion of Big Data," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    2. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    3. Liu, Jinlong & Dumitrescu, Cosmin E., 2018. "Flame development analysis in a diesel optical engine converted to spark ignition natural gas operation," Applied Energy, Elsevier, vol. 230(C), pages 1205-1217.
    4. Qicheng Xue & Xin Zhang & Teng Teng & Jibao Zhang & Zhiyuan Feng & Qinyang Lv, 2020. "A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-30, October.
    5. Peng, Hujun & Li, Jianxiang & Löwenstein, Lars & Hameyer, Kay, 2020. "A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle," Applied Energy, Elsevier, vol. 267(C).
    6. Morteza Nazari-Heris & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    7. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junjiang Zhang & Mingyue Shi & Mengnan Liu & Hanxiao Li & Bin Zhao & Xianghai Yan, 2024. "Dual-Source Cooperative Optimized Energy Management Strategy for Fuel Cell Tractor Considering Drive Efficiency and Power Allocation," Agriculture, MDPI, vol. 14(9), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seydali Ferahtia & Hegazy Rezk & Rania M. Ghoniem & Ahmed Fathy & Reem Alkanhel & Mohamed M. Ghonem, 2023. "Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    2. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2021. "Optimal Energy Management for Hybrid Electric Vehicles Based on Dynamic Programming and Receding Horizon," Energies, MDPI, vol. 14(12), pages 1-11, June.
    4. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    5. Alexander Koch & Lorenzo Nicoletti & Thomas Herrmann & Markus Lienkamp, 2022. "Implementation and Analyses of an Eco-Driving Algorithm for Different Battery Electric Powertrain Topologies Based on a Split Loss Integration Approach," Energies, MDPI, vol. 15(15), pages 1-29, July.
    6. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    7. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    8. Biao Li & Pengfei Wang & Peng Sun & Rui Meng & Jun Zeng & Guanghui Liu, 2023. "A Model for Determining the Optimal Decommissioning Interval of Energy Equipment Based on the Whole Life Cycle Cost," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    9. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    10. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    11. Jan Engelhardt & Jan Martin Zepter & Tatiana Gabderakhmanova & Gunnar Rohde & Mattia Marinelli, 2021. "Double-String Battery System with Reconfigurable Cell Topology Operated as a Fast Charging Station for Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-19, April.
    12. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    13. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Karimkashi, S. & Vuorinen, V., 2019. "Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds," Applied Energy, Elsevier, vol. 250(C), pages 801-820.
    14. Muhyaddin Rawa & Prem P & Jagabar Sathik Mohamed Ali & Marif Daula Siddique & Saad Mekhilef & Addy Wahyudie & Mehdi Seyedmahmoudian & Alex Stojcevski, 2021. "A New Multilevel Inverter Topology with Reduced DC Sources," Energies, MDPI, vol. 14(15), pages 1-21, August.
    15. Ummartyotin, S. & Bunnak, N. & Manuspiya, H., 2016. "A comprehensive review on modified clay based composite for energy based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 466-472.
    16. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    17. Huang, Shuai & Li, Tie & Zhang, Zhifei & Ma, Pengfei, 2019. "Rotational and vibrational temperatures in the spark plasma by various discharge energies and strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Adnan, Nadia & Nordin, Shahrina Md & Rahman, Imran & Rasli, Amran Md, 2017. "A new era of sustainable transport: An experimental examination on forecasting adoption behavior of EVs among Malaysian consumer," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 279-295.
    19. Nabeel Abdullah Alrabie & Ferdaus Mohamat-Yusuff & Hashim Rohasliney & Zufarzaana Zulkeflee & Mohammad Noor Azmai Amal & Aziz Arshad & Syaizwan Zahmir Zulkifli & Anugrah Ricky Wijaya & Najat Masood & , 2021. "Preliminary Evaluation of Heavy Metal Contamination and Source Identification in Kuala Lumpur SMART Stormwater Pond Sediments Using Pb Isotopic Signature," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    20. Duan, Xiongbo & Xu, Zhengxin & Sun, Xingyu & Deng, Banglin & Liu, Jingping, 2021. "Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12424-:d:1218083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.