IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp407-417.html
   My bibliography  Save this article

A game theory-based price bidding strategy for electric vehicle aggregators in the presence of wind power producers

Author

Listed:
  • Shojaabadi, Saeed
  • Talavat, Vahid
  • Galvani, Sadjad

Abstract

A game theory-based approach was proposed for energy exchange between the electric vehicles (EV) load and wind power producers (WPP) active in the regulation, balancing, and day-ahead markets. An optimal Bidding strategy was developed to reduce risks arising from the wind energy–EV imbalance in the energy markets where EV aggregators (EVAs) Bid price packages to WPPs for charging or not charging EVs to compensate for energy deviations. Generally, the WPP collects price Bids by aggregators to determine the share of each aggregator in energy exchange contracts by maximizing its profit function. On the other hand, there is competition between EV aggregators to sell their services to WPPs for compensating losses of EV owners. A non-cooperative game was to serve as a model for the competition among EV aggregators due to insufficient information. The Nash equilibrium was employed to solve this non-cooperative game.

Suggested Citation

  • Shojaabadi, Saeed & Talavat, Vahid & Galvani, Sadjad, 2022. "A game theory-based price bidding strategy for electric vehicle aggregators in the presence of wind power producers," Renewable Energy, Elsevier, vol. 193(C), pages 407-417.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:407-417
    DOI: 10.1016/j.renene.2022.04.163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoudi, Nadali & Saha, Tapan K. & Eghbal, Mehdi, 2014. "Modelling demand response aggregator behavior in wind power offering strategies," Applied Energy, Elsevier, vol. 133(C), pages 347-355.
    2. John C. Harsanyi, 2004. "Games with Incomplete Information Played by ÜBayesianÝ Players, I--III: Part I. The Basic Model&," Management Science, INFORMS, vol. 50(12_supple), pages 1804-1817, December.
    3. Zhou, Wei & Chen, Yaoqi & Zhai, Haoran & Zhang, Weigang, 2021. "Predictive energy management for a plug-in hybrid electric vehicle using driving profile segmentation and energy-based analytical SoC planning," Energy, Elsevier, vol. 220(C).
    4. Shojaabadi, Saeed & Abapour, Saeed & Abapour, Mehdi & Nahavandi, Ali, 2016. "Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties," Renewable Energy, Elsevier, vol. 99(C), pages 237-252.
    5. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    6. Baringo, L. & Conejo, A.J., 2013. "Correlated wind-power production and electric load scenarios for investment decisions," Applied Energy, Elsevier, vol. 101(C), pages 475-482.
    7. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    8. Li, Shaomao & Park, Chan S., 2018. "Wind power bidding strategy in the short-term electricity market," Energy Economics, Elsevier, vol. 75(C), pages 336-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Liao & Beibei Qian & Zhiqiang Jiang & Bo Fu & Hui He, 2023. "Integrated Energy Station Optimal Dispatching Using a Novel Many-Objective Optimization Algorithm Based on Multiple Update Strategies," Energies, MDPI, vol. 16(13), pages 1-26, July.
    2. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach," Energy, Elsevier, vol. 283(C).
    3. Morteza Nazari-Heris & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    4. Zhang, Qian & Wu, Xiaohan & Deng, Xiaosong & Huang, Yaoyu & Li, Chunyan & Wu, Jiaqi, 2023. "Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market," Applied Energy, Elsevier, vol. 341(C).
    5. Cesar Diaz-Londono & José Vuelvas & Giambattista Gruosso & Carlos Adrian Correa-Florez, 2022. "Remuneration Sensitivity Analysis in Prosumer and Aggregator Strategies by Controlling Electric Vehicle Chargers," Energies, MDPI, vol. 15(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Exizidis, Lazaros & Kazempour, S. Jalal & Pinson, Pierre & de Greve, Zacharie & Vallée, François, 2016. "Sharing wind power forecasts in electricity markets: A numerical analysis," Applied Energy, Elsevier, vol. 176(C), pages 65-73.
    2. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    3. Shinji Kuno & Kenji Tanaka & Yuji Yamada, 2022. "Effectiveness and Feasibility of Market Makers for P2P Electricity Trading," Energies, MDPI, vol. 15(12), pages 1-24, June.
    4. -, 2023. "Foreign Direct Investment in Latin America and the Caribbean 2023," La Inversión Extranjera Directa en América Latina y el Caribe, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 48979 edited by Eclac, May.
    5. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    6. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    7. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2020. "Strategic offering of a flexible producer in day-ahead and intraday power markets," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1136-1153.
    8. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    9. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    10. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    11. Duch-Brown, Néstor & Rossetti, Fiammetta, 2020. "Digital platforms across the European regional energy markets," Energy Policy, Elsevier, vol. 144(C).
    12. Sergio Montoya-Bueno & Jose Ignacio Muñoz-Hernandez & Javier Contreras & Luis Baringo, 2020. "A Benders’ Decomposition Approach for Renewable Generation Investment in Distribution Systems," Energies, MDPI, vol. 13(5), pages 1-19, March.
    13. Fagiani, Riccardo & Barquín, Julián & Hakvoort, Rudi, 2013. "Risk-based assessment of the cost-efficiency and the effectivity of renewable energy support schemes: Certificate markets versus feed-in tariffs," Energy Policy, Elsevier, vol. 55(C), pages 648-661.
    14. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    15. Shrimali, Gireesh & Nelson, David & Goel, Shobhit & Konda, Charith & Kumar, Raj, 2013. "Renewable deployment in India: Financing costs and implications for policy," Energy Policy, Elsevier, vol. 62(C), pages 28-43.
    16. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    17. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    18. Boffino, Luigi & Conejo, Antonio J. & Sioshansi, Ramteen & Oggioni, Giorgia, 2019. "A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems," Energy Economics, Elsevier, vol. 84(C).
    19. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    20. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:407-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.