IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics036054422302532x.html
   My bibliography  Save this article

Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach

Author

Listed:
  • Zheng, Yanchong
  • Wang, Yubin
  • Yang, Qiang

Abstract

The uncertainties induced by electric vehicle (EV) demand and market operations pose huge challenges to the optimal bidding decision of the EV aggregator (EVA) in the day-ahead (DA) market. Note that a risk-neutral bidding solution with the expected cost minimization may make the EVA suffer a high financial loss in the market. As such, in this study, a risk-averse bidding strategy is developed to support the EVA to participate in the market via the conditional value-at-risk (CVaR) to handle market price volatility. Specifically, the strategy minimizes the CVaR metric over a collection of real-time (RT) clearing scenarios to reduce the energy transaction risk of the EVA in the market. Moreover, the model is reformulated as a linear programming (LP) problem that is mathematically tractable and can be efficiently solved. The proposed solution is extensively assessed through experiments based on the PJM market against the risk-neutral bidding strategy as a comparison benchmark. The numerical results reveal that the proposed risk-averse bidding strategy outperforms the risk-neutral one in terms of risk control, which enables the EVA to avoid suffering a huge financial loss incurred by RT clearing prices. In addition, the transformed LP model is superior to the original model in computational efficiency.

Suggested Citation

  • Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302532x
    DOI: 10.1016/j.energy.2023.129138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302532X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    2. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Two-phase operation for coordinated charging of electric vehicles in a market environment: From electric vehicle aggregators’ perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    4. Afentoulis, Konstantinos D. & Bampos, Zafeirios N. & Vagropoulos, Stylianos I. & Keranidis, Stratos D. & Biskas, Pantelis N., 2022. "Smart charging business model framework for electric vehicle aggregators," Applied Energy, Elsevier, vol. 328(C).
    5. Zakernezhad, Hamid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Optimal resilient operation of multi-carrier energy systems in electricity markets considering distributed energy resource aggregators," Applied Energy, Elsevier, vol. 299(C).
    6. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    7. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    8. Shojaabadi, Saeed & Talavat, Vahid & Galvani, Sadjad, 2022. "A game theory-based price bidding strategy for electric vehicle aggregators in the presence of wind power producers," Renewable Energy, Elsevier, vol. 193(C), pages 407-417.
    9. Moghaddam, Saeed Zolfaghari & Akbari, Tohid, 2018. "Network-constrained optimal bidding strategy of a plug-in electric vehicle aggregator: A stochastic/robust game theoretic approach," Energy, Elsevier, vol. 151(C), pages 478-489.
    10. Han, Xiaojuan & Wei, Zixuan & Hong, Zhenpeng & Zhao, Song, 2020. "Ordered charge control considering the uncertainty of charging load of electric vehicles based on Markov chain," Renewable Energy, Elsevier, vol. 161(C), pages 419-434.
    11. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Nash bargaining based collaborative energy management for regional integrated energy systems in uncertain electricity markets," Energy, Elsevier, vol. 269(C).
    12. Jian, Linni & Zheng, Yanchong & Shao, Ziyun, 2017. "High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles," Applied Energy, Elsevier, vol. 186(P1), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Yang, Qiang & Wang, Yubin & Hu, Qinru, 2024. "Coordinated optimization of logistics scheduling and electricity dispatch for electric logistics vehicles considering uncertain electricity prices and renewable generation," Applied Energy, Elsevier, vol. 364(C).
    2. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barbero, Giulia & Barilli, Riccardo, 2024. "An energy management system to schedule the optimal participation to electricity markets and a statistical analysis of the bidding strategies over long time horizons," Renewable Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    2. Lei, Xiang & Yu, Hang & Shao, Ziyun & Jian, Linni, 2023. "Optimal bidding and coordinating strategy for maximal marginal revenue due to V2G operation: Distribution system operator as a key player in China's uncertain electricity markets," Energy, Elsevier, vol. 283(C).
    3. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Two-phase operation for coordinated charging of electric vehicles in a market environment: From electric vehicle aggregators’ perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Morteza Nazari-Heris & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    5. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    6. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    7. Wang, Yubin & Yang, Qiang & Zhou, Yue & Zheng, Yanchong, 2024. "A risk-averse day-ahead bidding strategy of transactive energy sharing microgrids with data-driven chance constraints," Applied Energy, Elsevier, vol. 353(PB).
    8. Chang, Weiguang & Yang, Qiang, 2023. "Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading," Applied Energy, Elsevier, vol. 351(C).
    9. Firouzi, Mehdi & Setayesh Nazar, Mehrdad & Shafie-khah, Miadreza & Catalão, João P.S., 2023. "Integrated framework for modeling the interactions of plug-in hybrid electric vehicles aggregators, parking lots and distributed generation facilities in electricity markets," Applied Energy, Elsevier, vol. 334(C).
    10. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
    11. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    12. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Optimal energy management of integrated energy systems for strategic participation in competitive electricity markets," Energy, Elsevier, vol. 278(PA).
    13. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
    14. Liu, Xin & Li, Yang & Lin, Xueshan & Guo, Jiqun & Shi, Yunpeng & Shen, Yunwei, 2022. "Dynamic bidding strategy for a demand response aggregator in the frequency regulation market," Applied Energy, Elsevier, vol. 314(C).
    15. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    16. Navid Shirzadi & Hadise Rasoulian & Fuzhan Nasiri & Ursula Eicker, 2022. "Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators," Energies, MDPI, vol. 15(20), pages 1-15, October.
    17. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    18. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    19. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    20. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302532x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.