IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v53y2018icp3-14.html
   My bibliography  Save this article

Wire-free electricity: Insights from a techno-futuristic exploration

Author

Listed:
  • Manohar, Mahesh
  • Lathabai, H.H.
  • George, Susan
  • Prabhakaran, Thara

Abstract

Wireless Power Transmission is an emerging technology that enables the transmission of electricity without the use of artificial conducting mediums. Lack of significant technological breakthroughs widely affected its progress. In this paper, we analyze the early progress of WPT and attempt to forecast its growth using Pearl curve model. Fisher-Pry substitution model analysis indicates that technology substitution of wired transmission has just begun and half the substitution will be over by 2028. We conducted patent landscaping to identify hot domains and specific technology areas. Implications for technology developers and manufacturers, electric utility providers and national policymakers are also identified.

Suggested Citation

  • Manohar, Mahesh & Lathabai, H.H. & George, Susan & Prabhakaran, Thara, 2018. "Wire-free electricity: Insights from a techno-futuristic exploration," Utilities Policy, Elsevier, vol. 53(C), pages 3-14.
  • Handle: RePEc:eee:juipol:v:53:y:2018:i:c:p:3-14
    DOI: 10.1016/j.jup.2018.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178717302527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2018.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    2. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    3. Luciano Kay & Nils Newman & Jan Youtie & Alan L. Porter & Ismael Rafols, 2014. "Patent overlay mapping: Visualizing technological distance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2432-2443, December.
    4. Kevin W. Boyack & Brian N. Wylie & George S. Davidson, 2002. "Domain visualization using VxInsight® for science and technology management," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 53(9), pages 764-774.
    5. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    6. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    7. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    8. Zoltan J. Acs & Luc Anselin & Attila Varga, 2008. "Patents and Innovation Counts as Measures of Regional Production of New Knowledge," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 11, pages 135-151, Edward Elgar Publishing.
    9. Shikha Juyal & Dr. Manoj Singh & Shashvat Singh & Sarbojit Pal, 2017. "INDIA Leaps Ahead: Transformative Mobility Solutions For All," Working Papers id:11749, eSocialSciences.
    10. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    11. Levin, Richard C, 1988. "Appropriability, R&D Spending, and Technological Performance," American Economic Review, American Economic Association, vol. 78(2), pages 424-428, May.
    12. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susan George & Hiran H. Lathabai & Thara Prabhakaran & Manoj Changat, 2020. "A framework towards bias-free contextual productivity assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 127-157, January.
    2. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    2. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    3. Angelo Kenneth S. Romasanta & Peter Sijde & Jacqueline Muijlwijk-Koezen, 2020. "Innovation in pharmaceutical R&D: mapping the research landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1801-1832, December.
    4. Kevin W. Boyack, 2017. "Thesaurus-based methods for mapping contents of publication sets," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1141-1155, May.
    5. Seokbeom Kwon & Alan Porter & Jan Youtie, 2016. "Navigating the innovation trajectories of technology by combining specialization score analyses for publications and patents: graphene and nano-enabled drug delivery," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1057-1071, March.
    6. Hötte, Kerstin, 2023. "Demand-pull, technology-push, and the direction of technological change," Research Policy, Elsevier, vol. 52(5).
    7. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    8. Emilio Abad-Segura & Ana Batlles-delaFuente & Mariana-Daniela González-Zamar & Luis Jesús Belmonte-Ureña, 2021. "Implications for Sustainability of the Joint Application of Bioeconomy and Circular Economy: A Worldwide Trend Study," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    9. Corredoira, Rafael A. & Banerjee, Preeta M., 2015. "Measuring patent's influence on technological evolution: A study of knowledge spanning and subsequent inventive activity," Research Policy, Elsevier, vol. 44(2), pages 508-521.
    10. Wallace, Matthew L. & Ràfols, Ismael, 2018. "Institutional shaping of research priorities: A case study on avian influenza," Research Policy, Elsevier, vol. 47(10), pages 1975-1989.
    11. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    12. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    13. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    14. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    15. Loet Leydesdorff & Daniele Rotolo & Ismael Rafols, 2012. "Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2239-2253, November.
    16. Nobuya Fukugawa, 2013. "University spillovers into small technology-based firms: channel, mechanism, and geography," The Journal of Technology Transfer, Springer, vol. 38(4), pages 415-431, August.
    17. Francesco Paolo Appio & Fabrizio Cesaroni & Alberto Minin, 2014. "Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 623-661, October.
    18. Loet Leydesdorff & Gaston Heimeriks & Daniele Rotolo, 2016. "Journal portfolio analysis for countries, cities, and organizations: Maps and comparisons," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(3), pages 741-748, March.
    19. Rongying Zhao & Bikun Chen, 2014. "Applying author co-citation analysis to user interaction analysis: a case study on instant messaging groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 985-997, November.
    20. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:53:y:2018:i:c:p:3-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.