Early detection of valuable patents using a deep learning model: Case of semiconductor industry
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2020.120146
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kyebambe, Moses Ntanda & Cheng, Ge & Huang, Yunqing & He, Chunhui & Zhang, Zhenyu, 2017. "Forecasting emerging technologies: A supervised learning approach through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 236-244.
- Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
- Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005.
"Market Value and Patent Citations,"
RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
- Hall, Bronwyn H. & Jaffe, A & Trajtenberg, M, 2005. "Market value and patent citations," Department of Economics, Working Paper Series qt0cs6v2w7, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006.
"Academic vs. industry patenting: an in-depth analysis of what determines patent value,"
ULB Institutional Repository
2013/6197, ULB -- Universite Libre de Bruxelles.
- Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006. "Academic vs. industry patenting: an in-depth analysis of what determines patent value," Working Papers CEB 05-008.RS, ULB -- Universite Libre de Bruxelles.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
- Alfonso Gambardella & Dietmar Harhoff & Bart Verspagen, 2017.
"The economic value of patent portfolios,"
Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(4), pages 735-756, December.
- Harhoff, Dietmar & Gambardella, Alfonso & Verspagen, Bart, 2013. "The Economic Value of Patent Portfolios," CEPR Discussion Papers 9264, C.E.P.R. Discussion Papers.
- Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
- Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
- Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015.
"What is an emerging technology?,"
Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
- Daniele Rotolo & Diana Hicks & Ben Martin, 2015. "What is an emerging technology?," SPRU Working Paper Series 2015-06, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Falk Nathan & Train Kenneth, 2017. "Patent Valuation with Forecasts of Forward Citations," Journal of Business Valuation and Economic Loss Analysis, De Gruyter, vol. 12(1), pages 101-121, February.
- Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
- Arundel, Anthony & Kabla, Isabelle, 1998. "What percentage of innovations are patented? empirical estimates for European firms," Research Policy, Elsevier, vol. 27(2), pages 127-141, June.
- Yi Zhang & Yue Qian & Ying Huang & Ying Guo & Guangquan Zhang & Jie Lu, 2017. "An entropy-based indicator system for measuring the potential of patents in technological innovation: rejecting moderation," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1925-1946, June.
- Abrishami, Ali & Aliakbary, Sadegh, 2019. "Predicting citation counts based on deep neural network learning techniques," Journal of Informetrics, Elsevier, vol. 13(2), pages 485-499.
- Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
- Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
- Niemann, Helen & Moehrle, Martin G. & Frischkorn, Jonas, 2017. "Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 210-220.
- Lee, Changyong & Kim, Juram & Kwon, Ohjin & Woo, Han-Gyun, 2016. "Stochastic technology life cycle analysis using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 53-64.
- Ming-Fu Wu & Keng-Wei Chang & Wei Zhou & Juan Hao & Chien-Chung Yuan & Ke-Chiun Chang, 2015. "Patent Deployment Strategies and Patent Value in LED Industry," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
- Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
- Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
- Iqra Safder & Saeed-Ul Hassan, 2019. "Bibliometric-enhanced information retrieval: a novel deep feature engineering approach for algorithm searching from full-text publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 257-277, April.
- Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
- Liu, Kun & Arthurs, Jonathan & Cullen, John & Alexander, Roger, 2008. "Internal sequential innovations: How does interrelatedness affect patent renewal?," Research Policy, Elsevier, vol. 37(5), pages 946-953, June.
- Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
- Sapsalis, Eleftherios & van Pottelsberghe de la Potterie, Bruno & Navon, Ran, 2006. "Academic versus industry patenting: An in-depth analysis of what determines patent value," Research Policy, Elsevier, vol. 35(10), pages 1631-1645, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Armin Mertens & Marc Scheufen, 2024. "Intellectual property and fourth industrial revolution technologies: how the patent system is shaping the future in the data-driven economy," European Journal of Law and Economics, Springer, vol. 57(1), pages 275-310, April.
- Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
- Juite Wang, 0000. "Analyzing and Predicting R&D Collaboration Networks in the Metaverse Industry," Proceedings of Economics and Finance Conferences 14716418, International Institute of Social and Economic Sciences.
- Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
- Eachempati, Prajwal & Srivastava, Praveen Ranjan & Kumar, Ajay & Tan, Kim Hua & Gupta, Shivam, 2021. "Validating the impact of accounting disclosures on stock market: A deep neural network approach," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
- Tae San Kim & Jong Wook Lee & Won Kyung Lee & So Young Sohn, 2022. "Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1715-1724, August.
- Wenjie Wei & Hongxu Liu & Zhuanlan Sun, 2022. "Cover papers of top journals are reliable source for emerging topics detection: a machine learning based prediction framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4315-4333, August.
- Perez-Castro, A. & Martínez-Torres, M.R. & Toral, S.L., 2023. "Efficiency of automatic text generators for online review content generation," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
- Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
- Xipeng Liu & Xinmiao Li, 2022. "Early Identification of Significant Patents Using Heterogeneous Applicant-Citation Networks Based on the Chinese Green Patent Data," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
- Kim, Juram & Hong, Suckwon & Kang, Yubin & Lee, Changyong, 2023. "Domain-specific valuation of university technologies using bibliometrics, Jonckheere–Terpstra tests, and data envelopment analysis," Technovation, Elsevier, vol. 122(C).
- Kim, Juram & Lee, Gyumin & Lee, Seungbin & Lee, Changyong, 2022. "Towards expert–machine collaborations for technology valuation: An interpretable machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Jaewoong Choi & Jiho Lee & Janghyeok Yoon & Sion Jang & Jaeyoung Kim & Sungchul Choi, 2022. "A two-stage deep learning-based system for patent citation recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6615-6636, November.
- Chollet, Barthélemy & Revet, Karine, 2023. "Digging deep or scratching the surface? Contingent innovation outcomes of seeking advice from geographically distant ties," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
- Li Yao & He Ni, 2023. "Prediction of patent grant and interpreting the key determinants: an application of interpretable machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 4933-4969, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Eun Han & So Sohn, 2015. "Patent valuation based on text mining and survival analysis," The Journal of Technology Transfer, Springer, vol. 40(5), pages 821-839, October.
- Nicolas van Zeebroeck, 2011.
"The puzzle of patent value indicators,"
Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
- Nicolas van Zeebroeck, 2007. "The puzzle of patent value indicators," Working Papers CEB 07-023.RS, ULB -- Universite Libre de Bruxelles.
- Nicolas van Zeebroeck, 2011. "The Puzzle of Patent Value Indicators," ULB Institutional Repository 2013/60729, ULB -- Universite Libre de Bruxelles.
- Nicolas van Zeebroeck, 2007. "Patents only live twice: a patent survival analysis in Europe," Working Papers CEB 07-028.RS, ULB -- Universite Libre de Bruxelles.
- Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021.
"Patent Quality: Towards a Systematic Framework for Analysis and Measurement,"
Research Policy, Elsevier, vol. 50(4).
- Kyle W. Higham & Gaétan de Rassenfosse & Adam B. Jaffe, 2020. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," NBER Working Papers 27598, National Bureau of Economic Research, Inc.
- Higham, Kyle & de Rassenfosse, Gaetan & Jaffe, Adam B, 2020. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," SocArXiv 49qxk, Center for Open Science.
- Kyle Higham & Gaetan de Rassenfosse & Adam Jaffe, 2021. "Patent quality: Towards a Systematic Framework for Analysis and Measurement," Working Papers 14, Chair of Science, Technology, and Innovation Policy.
- Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012.
"The nexus between science and industry: evidence from faculty inventions,"
The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
- Czarnitzki, Dirk & Hussinger, Katrin & Schneider, Cédric, 2009. "The nexus between science and industry: evidence from faculty inventions," ZEW Discussion Papers 09-028, ZEW - Leibniz Centre for European Economic Research.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
- Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
- Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Hanne Peeters & Julie Callaert & Bart Looy, 2020. "Do firms profit from involving academics when developing technology?," The Journal of Technology Transfer, Springer, vol. 45(2), pages 494-521, April.
- Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020.
"Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?,"
Research Policy, Elsevier, vol. 49(2).
- Nicolò Barbieri & Alberto Marzucchi & Ugo Rizzo, 2018. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," SPRU Working Paper Series 2018-11, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Nicolò Barbieri & Alberto Marzucchi & Ugo Rizzo, 2019. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," SEEDS Working Papers 0819, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2019.
- Mariani, Manuel Sebastian & Medo, Matúš & Lafond, François, 2019. "Early identification of important patents: Design and validation of citation network metrics," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 644-654.
- Leila Tahmooresnejad & Catherine Beaudry, 2019. "Capturing the economic value of triadic patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 127-157, January.
- Grimaldi, Michele & Cricelli, Livio & Di Giovanni, Martina & Rogo, Francesco, 2015. "The patent portfolio value analysis: A new framework to leverage patent information for strategic technology planning," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 286-302.
- Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
- Altuntas, Serkan & Dereli, Turkay & Kusiak, Andrew, 2015. "Analysis of patent documents with weighted association rules," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 249-262.
- Martin Kalthaus, 2020.
"Knowledge recombination along the technology life cycle,"
Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
- Martin Kalthaus, 2016. "Knowledge recombination along the technology life cycle," Jena Economics Research Papers 2016-012, Friedrich-Schiller-University Jena.
- Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
More about this item
Keywords
Patent evaluation; Convolution neural network; Bidirectional long short-term memory; Natural Language Processing; Multimodal Learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:158:y:2020:i:c:s0040162520309720. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.