IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2005-d328910.html
   My bibliography  Save this article

A Study on the Development Trends of the Energy System with Blockchain Technology Using Patent Analysis

Author

Listed:
  • Lin-Yun Huang

    (School of Information Engineering, Putian University, Putian 351100, Fujian, China)

  • Jian-Feng Cai

    (Office of Digital Putian Leading Group, Putian 351100, Fujian, China)

  • Tien-Chen Lee

    (Fuzhou University of International Studies and Trade, Changle 350202, Fujian, China)

  • Min-Hang Weng

    (School of Information Engineering, Putian University, Putian 351100, Fujian, China)

Abstract

Recently, the application of blockchain to the setting, management, and trading of the energy system has formed an innovative technology and has attracted a lot of attention from industry, academia, and research. In this study, we use patent analysis technology to explore the development trends of the energy system with blockchain technology. During the patent analysis process, this study makes corresponding analysis charts, such as patent application numbers over time, patent application numbers for main leading countries, applicants, patent citations, international patent classification (IPC), and life cycle. Relative research and design (R&D) capability of the top ten applicants is estimated and the cluster map of the technology is obtained. The technical features of the top five IPC patent applications are related to the cluster map to show the development of energy blockchain technology. Through this paper, first, the basics of the blockchain and patent analysis are illustrated and, moreover, the reason why and how blockchain technology can be combined with the energy system is also briefly described and analyzed. The results of the patent analysis of energy blockchain technology indicate that the United States leads the way, accounting for more than half of the global total. It is also interesting to note that the participants are not from traditional specific fields, but included electric power manufacturers, computer software companies, e-commerce companies, and even many new companies devoted to blockchain technology. Walmart Apollo, LLC and International Business Machines Corporation (IBM) have the highest number of patent applications. However, Walmart Apollo, LLC ranks first with a greater number of inventors of 36, an activity year of 2 years, and a relative R&D capability of 100%. IBM ranks second with an activity year of 3 years and a research and development capability of 91%. Among various applicants, IBM and LO3 energy started earlier in this field, and their patent output is also more prominent. The IPC is mainly concentrated in G06Q 50/06, which belongs to the technical field of the setting and management of the energy system including electricity, gas, or water supply. Currently, most projects are in the early development stages, and research on key areas is still ongoing to improve the required scalability, decentralization, and security. Thus, energy blockchain technology is still in the growth period, and there is still considerable room for development of the patent in the later period. Moreover, it is suggested that the novel communication module such as the combination of the consortium blockchain and the private blockchain cold also provide their own advantages to achieve the purpose of improving system performance and efficiency.

Suggested Citation

  • Lin-Yun Huang & Jian-Feng Cai & Tien-Chen Lee & Min-Hang Weng, 2020. "A Study on the Development Trends of the Energy System with Blockchain Technology Using Patent Analysis," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2005-:d:328910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pasquale Marcello Falcone, 2018. "Green investment strategies and bank-firm relationship: a firm-level analysis," Economics Bulletin, AccessEcon, vol. 38(4), pages 2225-2239.
    2. Mazzucato, Mariana & Semieniuk, Gregor, 2018. "Financing renewable energy: Who is financing what and why it matters," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 8-22.
    3. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    4. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    5. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    6. Anthony Breitzman & Patrick Thomas, 2015. "Inventor team size as a predictor of the future citation impact of patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 631-647, May.
    7. Jian Wang & Qianggang Wang & Niancheng Zhou & Yuan Chi, 2017. "A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction," Energies, MDPI, vol. 10(12), pages 1-22, November.
    8. Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
    9. Choi, Jinho & Hwang, Yong-Sik, 2014. "Patent keyword network analysis for improving technology development efficiency," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 170-182.
    10. Jennifer H. Chen & Show-Ling Jang & Sonya H. Wen, 2010. "Measuring technological diversification: identifying the effects of patent scale and patent scope," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 265-275, July.
    11. Kim, Gabjo & Bae, Jinwoo, 2017. "A novel approach to forecast promising technology through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 228-237.
    12. Peter Alstone & Dimitry Gershenson & Daniel M. Kammen, 2015. "Decentralized energy systems for clean electricity access," Nature Climate Change, Nature, vol. 5(4), pages 305-314, April.
    13. Jiani Wu & Nguyen Khoi Tran, 2018. "Application of Blockchain Technology in Sustainable Energy Systems: An Overview," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    14. Juhar Abdella & Khaled Shuaib, 2018. "Peer to Peer Distributed Energy Trading in Smart Grids: A Survey," Energies, MDPI, vol. 11(6), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He Chang & Huimin Liu & Shuai Jin, 2023. "Design of a river chief incentive mechanism based on blockchain: A principal–agent model," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(3), pages 1534-1546, April.
    2. Nan Jiang & Qi Han & Guohua Zhu, 2023. "A Three-Dimensional Analytical Framework: Textual Analysis and Comparison of Chinese and US Energy Blockchain Policies," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    3. Marco Schletz & Ana Cardoso & Gabriela Prata Dias & Søren Salomo, 2020. "How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison," Energies, MDPI, vol. 13(22), pages 1-23, November.
    4. Kalina, Jacek, 2023. "The quest for game changers - Review of new trends and innovations in the design of large-scale energy systems," Energy, Elsevier, vol. 277(C).
    5. Fei Gao & De-Li Chen & Min-Hang Weng & Ru-Yuan Yang, 2021. "Revealing Development Trends in Blockchain-Based 5G Network Technologies through Patent Analysis," Sustainability, MDPI, vol. 13(5), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chieh-Wa Tsai & Tung-Kuan Liu & Po-Wen Hsueh, 2020. "Patent Analysis of High Efficiency Tunneling Oxide Passivated Contact Solar Cells," Energies, MDPI, vol. 13(12), pages 1-16, June.
    2. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    3. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    4. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    5. Pantano, Eleonora & Priporas, Constantinos-Vasilios & Stylos, Nikolaos, 2018. "Knowledge Push Curve (KPC) in retailing: Evidence from patented innovations analysis affecting retailers' competitiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 44(C), pages 150-160.
    6. Eunsuk Chun & Sungchan Jun & Chulung Lee, 2021. "Identification of Promising Smart Farm Technologies and Development of Technology Roadmap Using Patent Map Analysis," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    7. Matteo Troncia & Marco Galici & Mario Mureddu & Emilio Ghiani & Fabrizio Pilo, 2019. "Distributed Ledger Technologies for Peer-to-Peer Local Markets in Distribution Networks," Energies, MDPI, vol. 12(17), pages 1-19, August.
    8. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    9. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    10. Pasquale Marcello Falcone & Edgardo Sica, 2019. "Assessing the Opportunities and Challenges of Green Finance in Italy: An Analysis of the Biomass Production Sector," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    11. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    13. Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
    14. Pinglin He & Jing Ning & Zhongfu Yu & Hao Xiong & Huayu Shen & Hui Jin, 2019. "Can Environmental Tax Policy Really Help to Reduce Pollutant Emissions? An Empirical Study of a Panel ARDL Model Based on OECD Countries and China," Sustainability, MDPI, vol. 11(16), pages 1-32, August.
    15. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.
    16. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    17. Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.
    18. Yongrong Xin & Muhammad Sajid Amin & Hashim Khan & Jiyuan Zheng & Muhammad Umer Quddoos, 2023. "Unleashing the Moderating Influence of Firms’ Life Cycle Stages and National Income on Capital Structure Targeting Behavior: A Roadmap towards Sustainable Development," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    19. Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "A Systematic Analysis of Real-World Energy Blockchain Initiatives," Future Internet, MDPI, vol. 11(8), pages 1-14, August.
    20. Frederik Plewnia, 2019. "The Energy System and the Sharing Economy: Interfaces and Overlaps and What to Learn from Them," Energies, MDPI, vol. 12(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2005-:d:328910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.