IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2888-d163785.html
   My bibliography  Save this article

Stochastic Electric Vehicle Network Considering Environmental Costs

Author

Listed:
  • Jie Ma

    (School of Transportation, Southeast University, Nanjing 211189, China
    Department of Engineering, National University of Singapore, Singapore 117576, Singapore)

  • Lin Cheng

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Dawei Li

    (School of Transportation, Southeast University, Nanjing 211189, China
    Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    Collaborative Innovation Center of Modern Urban Traffic, Southeast University, Nanjing 211189, China)

  • Qiang Tu

    (School of Transportation, Southeast University, Nanjing 211189, China)

Abstract

In recent years, many countries have published their timetables to promote electric vehicles. Many researches have focused on the benefits of electric vehicles. Compared with gas vehicles, electric vehicles are more suitable for modern cities, because they are considered to be environment-friendly by the public. Hence we pay attention to the environmental costs of electric vehicles. In this paper, an electric vehicle network is established. To analyze this electric vehicle network, we define environmental costs for the network and propose a stochastic user equilibrium model to describe drivers’ route choice behavior. An algorithm is proposed to solve this model. The model and the algorithm are illustrated through a numerical example. We test the calculation feasibility of the proposed model and the computational efficiency of the proposed algorithm via this numerical example. A comparative analysis is conducted to show the benefits of introducing electric vehicles into traffic networks. With the sensitivity analysis, we also reveal the relationship between people’s environmental awareness, the quantity of electric vehicles and the environmental costs of the overall traffic network.

Suggested Citation

  • Jie Ma & Lin Cheng & Dawei Li & Qiang Tu, 2018. "Stochastic Electric Vehicle Network Considering Environmental Costs," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2888-:d:163785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoph Mazur & Gregory J. Offer & Marcello Contestabile & Nigel Brandon Brandon, 2018. "Comparing the Effects of Vehicle Automation, Policy-Making and Changed User Preferences on the Uptake of Electric Cars and Emissions from Transport," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    2. Allen Blackman & Francisco Alpízar & Fredrik Carlsson & Marisol Rivera Planter, 2018. "A Contingent Valuation Approach to Estimating Regulatory Costs: Mexico’s Day without Driving Program," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(3), pages 607-641.
    3. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
    4. Ioakimidis, Christos S. & Thomas, Dimitrios & Rycerski, Pawel & Genikomsakis, Konstantinos N., 2018. "Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot," Energy, Elsevier, vol. 148(C), pages 148-158.
    5. Eunil Park & Jooyoung Lim & Yongwoo Cho, 2018. "Understanding the Emergence and Social Acceptance of Electric Vehicles as Next-Generation Models for the Automobile Industry," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    6. Ehsan Jafari & Stephen D. Boyles, 2017. "Multicriteria Stochastic Shortest Path Problem for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 17(3), pages 1043-1070, September.
    7. Larry J. Leblanc, 1975. "An Algorithm for the Discrete Network Design Problem," Transportation Science, INFORMS, vol. 9(3), pages 183-199, August.
    8. Hani S. Mahmassani & Gang-Len Chang, 1987. "On Boundedly Rational User Equilibrium in Transportation Systems," Transportation Science, INFORMS, vol. 21(2), pages 89-99, May.
    9. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    10. Guo, Xiaolei & Yang, Hai & Liu, Tian-Liang, 2010. "Bounding the inefficiency of logit-based stochastic user equilibrium," European Journal of Operational Research, Elsevier, vol. 201(2), pages 463-469, March.
    11. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Liu & Dong Liu & Cheng Li & Toshiyuki Yamamoto, 2019. "Eco-Speed Guidance for the Mixed Traffic of Electric Vehicles and Internal Combustion Engine Vehicles at an Isolated Signalized Intersection," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    2. Qiang Tu & Lin Cheng & Dawei Li & Jie Ma & Chao Sun, 2018. "Stochastic Transportation Network Considering ATIS with the Information of Environmental Cost," Sustainability, MDPI, vol. 10(11), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    2. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    3. Qiang Tu & Lin Cheng & Dawei Li & Jie Ma & Chao Sun, 2018. "Stochastic Transportation Network Considering ATIS with the Information of Environmental Cost," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    4. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    5. Wei, Chong & Asakura, Yasuo & Iryo, Takamasa, 2014. "Formulating the within-day dynamic stochastic traffic assignment problem from a Bayesian perspective," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 45-57.
    6. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    7. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    8. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    9. Zangui, Mahmood & Aashtiani, Hedayat Z. & Lawphongpanich, Siriphong & Yin, Yafeng, 2015. "Path-differentiated pricing in congestion mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 202-219.
    10. Shanjiang Zhu & David Levinson, 2011. "A Portfolio Theory of Route Choice," Working Papers 000096, University of Minnesota: Nexus Research Group.
    11. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    12. Alireza Ermagun & David M Levinson, 2019. "Development and application of the network weight matrix to predict traffic flow for congested and uncongested conditions," Environment and Planning B, , vol. 46(9), pages 1684-1705, November.
    13. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    14. Ding, Hongxing & Yang, Hai & Xu, Hongli & Li, Ting, 2023. "Status quo-dependent user equilibrium model with adaptive value of time," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 77-90.
    15. Han, Sangjin, 2003. "Dynamic traffic modelling and dynamic stochastic user equilibrium assignment for general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 225-249, March.
    16. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    17. S. F. A. Batista & Ludovic Leclercq, 2019. "Regional Dynamic Traffic Assignment Framework for Macroscopic Fundamental Diagram Multi-regions Models," Transportation Science, INFORMS, vol. 53(6), pages 1563-1590, November.
    18. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    19. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    20. Di, Xuan & Liu, Henry X. & Ban, Xuegang (Jeff), 2016. "Second best toll pricing within the framework of bounded rationality," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 74-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2888-:d:163785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.