The maximal covering bicycle network design problem
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tra.2022.02.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bai, Lu & Liu, Pan & Chan, Ching-Yao & Li, Zhibin, 2017. "Estimating level of service of mid-block bicycle lanes considering mixed traffic flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 203-217.
- Murawski, Lisa & Church, Richard L., 2009. "Improving accessibility to rural health services: The maximal covering network improvement problem," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 102-110, June.
- T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
- Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
- Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
- Jessica Schoner & David Levinson, 2014.
"The missing link: bicycle infrastructure networks and ridership in 74 US cities,"
Transportation, Springer, vol. 41(6), pages 1187-1204, November.
- Jessica E. Schoner & David Levinson, 2014. "The Missing Link: Bicycle Infrastructure Networks and Ridership in 74 US Cities," Working Papers 000118, University of Minnesota: Nexus Research Group.
- Iacono, Michael & Krizek, Kevin J. & El-Geneidy, Ahmed, 2010. "Measuring non-motorized accessibility: issues, alternatives, and execution," Journal of Transport Geography, Elsevier, vol. 18(1), pages 133-140.
- Jen-Jia Lin & Chia-Jung Yu, 2013. "A bikeway network design model for urban areas," Transportation, Springer, vol. 40(1), pages 45-68, January.
- Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
- Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
- Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
- Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
- Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
- Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
- Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
- Behbahani, Hamid & Nazari, Sobhan & Jafari Kang, Masood & Litman, Todd, 2019. "A conceptual framework to formulate transportation network design problem considering social equity criteria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 171-183.
- Zuo, Ting & Wei, Heng, 2019. "Bikeway prioritization to increase bicycle network connectivity and bicycle-transit connection: A multi-criteria decision analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 52-71.
- Larry J. Leblanc, 1975. "An Algorithm for the Discrete Network Design Problem," Transportation Science, INFORMS, vol. 9(3), pages 183-199, August.
- Conrow, Lindsey & Murray, Alan T. & Fischer, Heather A., 2018. "An optimization approach for equitable bicycle share station siting," Journal of Transport Geography, Elsevier, vol. 69(C), pages 163-170.
- Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
- Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
- CONSTANTINE TOREGAS & CHARLES ReVELLE, 1972. "Optimal Location Under Time Or Distance Constraints," Papers in Regional Science, Wiley Blackwell, vol. 28(1), pages 133-144, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Brussel, Mark, 2022. "Understanding the effect of sociodemographic, natural and built environment factors on cycling accessibility," Journal of Transport Geography, Elsevier, vol. 102(C).
- Caicedo, Angélica & Estrada, Miquel & Medina-Tapia, Marcos & Mayorga, Miguel, 2023. "Optimizing bike network design: A cost-effective methodology for heterogeneous travel demands using continuous approximation techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
- Melo, Lucas Eduardo Araújo de & Isler, Cassiano Augusto, 2023. "Integrating link count data for enhanced estimation of deterrence functions: A case study of short-term bicycle network interventions," Journal of Transport Geography, Elsevier, vol. 112(C).
- Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
- Faghih Imani, Ahmadreza & Miller, Eric J. & Saxe, Shoshanna, 2019. "Cycle accessibility and level of traffic stress: A case study of Toronto," Journal of Transport Geography, Elsevier, vol. 80(C).
- Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
- Michael Hardinghaus & Simon Nieland & Marius Lehne & Jan Weschke, 2021. "More than Bike Lanes—A Multifactorial Index of Urban Bikeability," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
- Wang, David Z.W. & Liu, Haoxiang & Szeto, W.Y., 2015. "A novel discrete network design problem formulation and its global optimization solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 213-230.
- Siying Zhu & Feng Zhu, 2020. "Multi-objective bike-way network design problem with space–time accessibility constraint," Transportation, Springer, vol. 47(5), pages 2479-2503, October.
- Bagloee, Saeed Asadi & Sarvi, Majid & Wallace, Mark, 2016. "Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 102-121.
- Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.
- Hamid Farvaresh & Mohammad Sepehri, 2013. "A Branch and Bound Algorithm for Bi-level Discrete Network Design Problem," Networks and Spatial Economics, Springer, vol. 13(1), pages 67-106, March.
- Passmore, Reid & Watkins, Kari & Guensler, Randall, 2024. "Using shortest path routing to assess cycling networks," Journal of Transport Geography, Elsevier, vol. 117(C).
- Giulia Reggiani & Tim Oijen & Homayoun Hamedmoghadam & Winnie Daamen & Hai L. Vu & Serge Hoogendoorn, 2022. "Understanding bikeability: a methodology to assess urban networks," Transportation, Springer, vol. 49(3), pages 897-925, June.
- Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
- Caicedo, Angélica & Estrada, Miquel & Medina-Tapia, Marcos & Mayorga, Miguel, 2023. "Optimizing bike network design: A cost-effective methodology for heterogeneous travel demands using continuous approximation techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
- Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
- Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
- Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
- Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
More about this item
Keywords
Bicycle; Network; Coverage; Access; Connectivity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:159:y:2022:i:c:p:222-236. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.