IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v190y2024ics0191261524001760.html
   My bibliography  Save this article

Local detouredness: A new phenomenon for modelling route choice and traffic assignment

Author

Listed:
  • Rasmussen, Thomas Kjær
  • Duncan, Lawrence Christopher
  • Watling, David Paul
  • Nielsen, Otto Anker

Abstract

This study introduces the novel concept of local detouredness, i.e. detours on subsections of a route, as a new phenomenon for understanding and modelling route choice. Traditionally, Stochastic User Equilibrium (SUE) traffic assignment models have been concerned with judging the attractiveness of a route by its total route cost. However, through empirical analysis we show that considering solely the global properties of a route is insufficient. We find that it is important to consider local detouredness both when determining realistic and tractable route choice sets and when determining route choice probabilities. For example, analysis of observed route choice data shows that route usage tends to decay with local detouredness, and that there is an apparent limit on the amount of local detouredness seen as acceptable. No existing models can account for this systematically and consistently, which is the motivation for the new route choice model proposed in this paper: the Bounded Choice Model with Local Detour Threshold (BCM-LDT). The BCM-LDT model incorporates the effect of local detouredness on route choice probability, and has an in-built mechanism that assigns zero probabilities to routes violating a bound on total route costs and/or a threshold on local detouredness. Thereby, the model consistently predicts which routes are used and unused. Moreover, the probability expression is closed-form and continuous. SUE conditions for the BCM-LDT are given, and solution existence is proven. Exploiting the special structure of the problem, a novel solution algorithm is proposed where flow averaging is integrated with a modified branch-and-bound method that iteratively column-generates all routes satisfying local and global bounds. Numerical experiments are conducted on small-scale and large-scale networks, establishing that equilibrated solutions can be found and demonstrating the influence of the BCM-LDT parameters on choice set size and flow allocation.

Suggested Citation

  • Rasmussen, Thomas Kjær & Duncan, Lawrence Christopher & Watling, David Paul & Nielsen, Otto Anker, 2024. "Local detouredness: A new phenomenon for modelling route choice and traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001760
    DOI: 10.1016/j.trb.2024.103052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.