IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v72y2015icp20-39.html
   My bibliography  Save this article

Global optimization method for network design problem with stochastic user equilibrium

Author

Listed:
  • Liu, Haoxiang
  • Wang, David Z.W.

Abstract

In this paper, we consider the continuous road network design problem with stochastic user equilibrium constraint that aims to optimize the network performance via road capacity expansion. The network flow pattern is subject to stochastic user equilibrium, specifically, the logit route choice model. The resulting formulation, a nonlinear nonconvex programming problem, is firstly transformed into a nonlinear program with only logarithmic functions as nonlinear terms, for which a tight linear programming relaxation is derived by using an outer-approximation technique. The linear programming relaxation is then embedded within a global optimization solution algorithm based on range reduction technique, and the proposed approach is proved to converge to a global optimum.

Suggested Citation

  • Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
  • Handle: RePEc:eee:transb:v:72:y:2015:i:c:p:20-39
    DOI: 10.1016/j.trb.2014.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514001878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han-Lin Li & Hao-Chun Lu, 2009. "Global Optimization for Generalized Geometric Programs with Mixed Free-Sign Variables," Operations Research, INFORMS, vol. 57(3), pages 701-713, June.
    2. Chaisak Suwansirikul & Terry L. Friesz & Roger L. Tobin, 1987. "Equilibrium Decomposed Optimization: A Heuristic for the Continuous Equilibrium Network Design Problem," Transportation Science, INFORMS, vol. 21(4), pages 254-263, November.
    3. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    4. Abdulaal, Mustafa & LeBlanc, Larry J., 1979. "Continuous equilibrium network design models," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 19-32, March.
    5. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    6. Davis, Gary A., 1994. "Exact local solution of the continuous network design problem via stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 61-75, February.
    7. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    8. Li, Changmin & Yang, Hai & Zhu, Daoli & Meng, Qiang, 2012. "A global optimization method for continuous network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1144-1158.
    9. Yang, Hai & Yagar, Sam, 1995. "Traffic assignment and signal control in saturated road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 125-139, March.
    10. Fontaine, Pirmin & Minner, Stefan, 2014. "Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 163-172.
    11. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
    12. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    13. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    14. Chiou, Suh-Wen, 2005. "Bilevel programming for the continuous transport network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 361-383, May.
    15. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    16. Larry J. Leblanc, 1975. "An Algorithm for the Discrete Network Design Problem," Transportation Science, INFORMS, vol. 9(3), pages 183-199, August.
    17. Terry L. Friesz & Hsun-Jung Cho & Nihal J. Mehta & Roger L. Tobin & G. Anandalingam, 1992. "A Simulated Annealing Approach to the Network Design Problem with Variational Inequality Constraints," Transportation Science, INFORMS, vol. 26(1), pages 18-26, February.
    18. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
    2. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    3. Bar-Gera, Hillel & Hellman, Fredrik & Patriksson, Michael, 2013. "Computational precision of traffic equilibria sensitivities in automatic network design and road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 485-500.
    4. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    5. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.
    6. Li, Changmin & Yang, Hai & Zhu, Daoli & Meng, Qiang, 2012. "A global optimization method for continuous network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1144-1158.
    7. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    8. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    9. Karimi Dehnavi, Hadi & Rezvan, Mohammad Taghi & Shirmohammadli, Abdolmatin & Vallée, Dirk, 2013. "A solution for urban road selection and construction problem using simulation and goal programming—Case study of the city of Isfahan," Transport Policy, Elsevier, vol. 29(C), pages 46-53.
    10. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    11. Arash Kaviani & Russell G. Thompson & Abbas Rajabifard & Majid Sarvi, 2020. "A model for multi-class road network recovery scheduling of regional road networks," Transportation, Springer, vol. 47(1), pages 109-143, February.
    12. Wei Huang & Guangming Xu & Hong K. Lo, 2020. "Pareto-Optimal Sustainable Transportation Network Design under Spatial Queuing," Networks and Spatial Economics, Springer, vol. 20(3), pages 637-673, September.
    13. Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
    14. Ziyi Zhou & Min Yang & Fei Sun & Zheyuan Wang & Boqing Wang, 2021. "A Continuous Transportation Network Design Problem with the Consideration of Road Congestion Charging," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    15. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    16. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
    17. Xiang Zhang & S. Travis Waller, 2019. "Implications of link-based equity objectives on transportation network design problem," Transportation, Springer, vol. 46(5), pages 1559-1589, October.
    18. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    19. Wang, David Z.W. & Liu, Haoxiang & Szeto, W.Y., 2015. "A novel discrete network design problem formulation and its global optimization solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 213-230.
    20. Hong Zheng & Xiaozheng He & Yongfu Li & Srinivas Peeta, 2017. "Traffic Equilibrium and Charging Facility Locations for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 17(2), pages 435-457, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:72:y:2015:i:c:p:20-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.