IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v59y2014icp45-57.html
   My bibliography  Save this article

Formulating the within-day dynamic stochastic traffic assignment problem from a Bayesian perspective

Author

Listed:
  • Wei, Chong
  • Asakura, Yasuo
  • Iryo, Takamasa

Abstract

This study proposes a formulation of the within-day dynamic stochastic traffic assignment problem. Considering the stochastic nature of route choice behavior, we treat the solution to the assignment problem as the conditional joint distribution of route traffic, given that the network is in dynamic stochastic user equilibrium. We acquire the conditional joint probability distribution using Bayes’ theorem. A Metropolis–Hastings sampling scheme is developed to estimate the characteristics (e.g., mean and variance) of the route traffic. The proposed formulation has no special requirements for the traffic flow models and user behavior models, and so is easily implemented.

Suggested Citation

  • Wei, Chong & Asakura, Yasuo & Iryo, Takamasa, 2014. "Formulating the within-day dynamic stochastic traffic assignment problem from a Bayesian perspective," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 45-57.
  • Handle: RePEc:eee:transb:v:59:y:2014:i:c:p:45-57
    DOI: 10.1016/j.trb.2013.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513002026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cascetta, Ennio, 1989. "A stochastic process approach to the analysis of temporal dynamics in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 1-17, February.
    2. Lo, Hong K. & Szeto, W. Y., 2002. "A cell-based variational inequality formulation of the dynamic user optimal assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 421-443, June.
    3. Iryo, Takamasa, 2011. "Multiple equilibria in a dynamic traffic network," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 867-879, July.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    5. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    6. Han, Sangjin, 2003. "Dynamic traffic modelling and dynamic stochastic user equilibrium assignment for general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 225-249, March.
    7. Parry, Katharina & Hazelton, Martin L., 2013. "Bayesian inference for day-to-day dynamic traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 104-115.
    8. Hazelton, Martin L., 1998. "Some Remarks on Stochastic User Equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 101-108, February.
    9. Sumalee, Agachai & Tan, Zhijia & Lam, William H.K., 2009. "Dynamic stochastic transit assignment with explicit seat allocation model," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 895-912, September.
    10. Larry J. Leblanc, 1975. "An Algorithm for the Discrete Network Design Problem," Transportation Science, INFORMS, vol. 9(3), pages 183-199, August.
    11. Kuwahara, Masao & Akamatsu, Takashi, 1997. "Decomposition of the reactive dynamic assignments with queues for a many-to-many origin-destination pattern," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 1-10, February.
    12. Han, Sangjin, 2007. "A route-based solution algorithm for dynamic user equilibrium assignments," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1094-1113, December.
    13. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
    2. Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    2. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    3. Long, Jiancheng & Szeto, W.Y. & Du, Jie & Wong, R.C.P., 2017. "A dynamic taxi traffic assignment model: A two-level continuum transportation system approach," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 222-254.
    4. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    5. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    6. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    7. Zhu, Zheng & Mardan, Atabak & Zhu, Shanjiang & Yang, Hai, 2021. "Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 48-64.
    8. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2014. "Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 186-200.
    9. Martin L. Hazelton & David P. Watling, 2004. "Computation of Equilibrium Distributions of Markov Traffic-Assignment Models," Transportation Science, INFORMS, vol. 38(3), pages 331-342, August.
    10. Jiang, Yanqun & Wong, S.C. & Ho, H.W. & Zhang, Peng & Liu, Ruxun & Sumalee, Agachai, 2011. "A dynamic traffic assignment model for a continuum transportation system," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 343-363, February.
    11. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    12. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    13. Jang, Wonjae & Ran, Bin & Choi, Keechoo, 2005. "A discrete time dynamic flow model and a formulation and solution method for dynamic route choice," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 593-620, August.
    14. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    15. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    16. Lim, Yongtaek & Heydecker, Benjamin, 2005. "Dynamic departure time and stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 97-118, February.
    17. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    18. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Xiong, Tao & Zhang, Mengping & Choi, Keechoo, 2013. "Revisiting Jiang’s dynamic continuum model for urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 96-119.
    19. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    20. David Watling, 2002. "A Second Order Stochastic Network Equilibrium Model, II: Solution Method and Numerical Experiments," Transportation Science, INFORMS, vol. 36(2), pages 167-183, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:59:y:2014:i:c:p:45-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.