IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p676-d134340.html
   My bibliography  Save this article

Comparing the Effects of Vehicle Automation, Policy-Making and Changed User Preferences on the Uptake of Electric Cars and Emissions from Transport

Author

Listed:
  • Christoph Mazur

    (Chemical Engineering Department, Imperial College London, London SW7 2AZ, UK
    Earth Science and Engineering Department, Imperial College London, London SW7 2AZ, UK)

  • Gregory J. Offer

    (Mechanical Engineering Department, Imperial College London, London SW7 2AZ, UK)

  • Marcello Contestabile

    (Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK)

  • Nigel Brandon Brandon

    (Earth Science and Engineering Department, Imperial College London, London SW7 2AZ, UK)

Abstract

Switching energy demand for transport from liquid fuels to electricity is the most promising way to significantly improve air quality and reduce transport emissions. Previous studies have shown this is possible, that by 2035 the economics of alternative powertrain and energy vectors will have converged. However, they do not address whether the transition is likely or plausible. Using the UK as a case study, we present a systems dynamics model based study informed by transition theory and explore the effects of technology progress, policy-making, user preferences and; for the first time, automated vehicles on this transition. We are not trying to predict the future but to highlight what is necessary in order for different scenarios to become more or less likely. Worryingly we show that current policies with the expected technology progress and expectations of vehicle buyers are insufficient to reach global targets. Faster technology progress, strong financial incentives or a change in vehicle buyer expectations are crucial but still insufficient. In contrast, the biggest switch to alternatively fuelled vehicles could be achieved by the introduction of automated vehicles. The implications will affect policy makers, automotive manufactures, technology developers and broader society.

Suggested Citation

  • Christoph Mazur & Gregory J. Offer & Marcello Contestabile & Nigel Brandon Brandon, 2018. "Comparing the Effects of Vehicle Automation, Policy-Making and Changed User Preferences on the Uptake of Electric Cars and Emissions from Transport," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:676-:d:134340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Offer, G.J. & Contestabile, M. & Howey, D.A. & Clague, R. & Brandon, N.P., 2011. "Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK," Energy Policy, Elsevier, vol. 39(4), pages 1939-1950, April.
    2. Auvinen, Heidi & Ruutu, Sampsa & Tuominen, Anu & Ahlqvist, Toni & Oksanen, Juha, 2015. "Process supporting strategic decision-making in systemic transitions," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 97-114.
    3. van der Vooren & Eric Brouillat, 2013. "Evaluating CO2 reduction policy portfolios in the automotive sector," Innovation Studies Utrecht (ISU) working paper series 13-01, Utrecht University, Department of Innovation Studies, revised Feb 2013.
    4. Köhler, Jonathan & Whitmarsh, Lorraine & Nykvist, Björn & Schilperoord, Michel & Bergman, Noam & Haxeltine, Alex, 2009. "A transitions model for sustainable mobility," Ecological Economics, Elsevier, vol. 68(12), pages 2985-2995, October.
    5. Martino Tran & David Banister & Justin D. K. Bishop & Malcolm D. McCulloch, 2012. "Realizing the electric-vehicle revolution," Nature Climate Change, Nature, vol. 2(5), pages 328-333, May.
    6. Martin Jänicke & Klaus Jacob, 2004. "Lead Markets for Environmental Innovations: A New Role for the Nation State," Global Environmental Politics, MIT Press, vol. 4(1), pages 29-46, February.
    7. Jeffery B. Greenblatt & Samveg Saxena, 2015. "Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles," Nature Climate Change, Nature, vol. 5(9), pages 860-863, September.
    8. Robert M. Bushman & Joseph D. Piotroski & Abbie J. Smith, 2011. "Capital Allocation and Timely Accounting Recognition of Economic Losses," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 38(1-2), pages 1-33, January.
    9. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    10. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    11. Morris Teubal, 2002. "special issue: What is the systems perspective to Innovation and Technology Policy(ITP) and how can we apply it to developing and newly industrialized economies?," Journal of Evolutionary Economics, Springer, vol. 12(1), pages 233-257.
    12. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    13. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    14. A. van Der Vooren & Eric Brouillat, 2015. "Evaluating CO 2 reduction policy mixes in the automotive sector," Post-Print hal-03116360, HAL.
    15. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    16. Schwanen, Tim & Banister, David & Anable, Jillian, 2011. "Scientific research about climate change mitigation in transport: A critical review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 993-1006.
    17. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    18. Budde, Björn & Alkemade, Floortje & Weber, K. Matthias, 2012. "Expectations as a key to understanding actor strategies in the field of fuel cell and hydrogen vehicles," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1072-1083.
    19. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    20. Elizabeth Shove & Gordon Walker, 2007. "Caution! Transitions Ahead: Politics, Practice, and Sustainable Transition Management," Environment and Planning A, , vol. 39(4), pages 763-770, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zarbakhshnia, Navid & Ma, Zhenliang, 2024. "Critical success factors for the adoption of AVs in sustainable urban transportation," Transport Policy, Elsevier, vol. 156(C), pages 62-76.
    2. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    3. Eric Williams & Vivekananda Das & Andrew Fisher, 2020. "Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice," Sustainability, MDPI, vol. 12(5), pages 1-13, March.
    4. Mihai Machedon-Pisu & Paul Nicolae Borza, 2021. "A Methodological Approach to Assess the Impact of Energy and Raw Materials Constraints on the Sustainable Deployment of Light-Duty Vehicles by 2050," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    5. Carmichael, R. & Gross, R. & Hanna, R. & Rhodes, A. & Green, T., 2021. "The Demand Response Technology Cluster: Accelerating UK residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Jie Ma & Lin Cheng & Dawei Li & Qiang Tu, 2018. "Stochastic Electric Vehicle Network Considering Environmental Costs," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    7. Victor Osvaldo Vega-Muratalla & César Ramírez-Márquez & Luis Fernando Lira-Barragán & José María Ponce-Ortega, 2024. "Review of Lithium as a Strategic Resource for Electric Vehicle Battery Production: Availability, Extraction, and Future Prospects," Resources, MDPI, vol. 13(11), pages 1-20, October.
    8. Shuang Kan & Wei Lyu & Shiyu Zhao, 2022. "Evaluation of the Environmental Effect of Automated Vehicles Based on IVIULWG Operator Development," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    9. Mihai Machedon-Pisu & Paul Nicolae Borza, 2022. "Impact of the Light-Duty Vehicles’ Storage and Travel Demand on the Sustainable Exploitation of Available Resources and Air Pollution Abatement," Sustainability, MDPI, vol. 14(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    2. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    3. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    4. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    5. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    6. Ossenbrink, Jan & Finnsson, Sveinbjoern & Bening, Catharina R. & Hoffmann, Volker H., 2019. "Delineating policy mixes: Contrasting top-down and bottom-up approaches to the case of energy-storage policy in California," Research Policy, Elsevier, vol. 48(10).
    7. Contestabile, Marcello & Alajaji, Mohammed & Almubarak, Bader, 2017. "Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?," Energy Policy, Elsevier, vol. 110(C), pages 20-30.
    8. Nihit Goyal & Michael Howlett, 2018. "Technology and Instrument Constituencies as Agents of Innovation: Sustainability Transitions and the Governance of Urban Transport," Energies, MDPI, vol. 11(5), pages 1-14, May.
    9. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    10. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Karoline Augenstein & Alexandra Palzkill, 2015. "The Dilemma of Incumbents in Sustainability Transitions: A Narrative Approach," Administrative Sciences, MDPI, vol. 6(1), pages 1-23, December.
    12. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.
    13. Miklós Antal & Ardjan Gazheli & Jeroen C.J.M. van den Bergh, 2012. "Behavioural Foundations of Sustainability Transitions. WWWforEurope Working Paper No. 3," WIFO Studies, WIFO, number 46424.
    14. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    15. Pasaoglu, Guzay & Harrison, Gillian & Jones, Lee & Hill, Andrew & Beaudet, Alexandre & Thiel, Christian, 2016. "A system dynamics based market agent model simulating future powertrain technology transition: Scenarios in the EU light duty vehicle road transport sector," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 133-146.
    16. Köhrsen, Jens, 2018. "Exogenous shocks, social skill, and power: Urban energy transitions as social fields," Energy Policy, Elsevier, vol. 117(C), pages 307-315.
    17. Eggimann, Sven & Truffer, Bernhard & Feldmann, Ulrike & Maurer, Max, 2018. "Screening European market potentials for small modular wastewater treatment systems – an inroad to sustainability transitions in urban water management?," Land Use Policy, Elsevier, vol. 78(C), pages 711-725.
    18. Zeppini, Paolo, 2015. "A discrete choice model of transitions to sustainable technologies," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 187-203.
    19. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    20. Leitch, Aletta & Haley, Brendan & Hastings-Simon, Sara, 2019. "Can the oil and gas sector enable geothermal technologies? Socio-technical opportunities and complementarity failures in Alberta, Canada," Energy Policy, Elsevier, vol. 125(C), pages 384-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:676-:d:134340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.