IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v110y2018icp209-238.html
   My bibliography  Save this article

Transportation network design for maximizing flow-based accessibility

Author

Listed:
  • Di, Zhen
  • Yang, Lixing
  • Qi, Jianguo
  • Gao, Ziyou

Abstract

One of the significant aims of transportation network design and management is to improve the service level of the network and the accessibility of individual trips in a certain period. By adopting a well-defined accessibility measure, this paper studies a new discrete network design problem for metropolitan areas, in which some concepts, including the accessible flow, travel time budget function and principles of user equilibrium and system optimization with travel time budgets, are proposed. Then, two deterministic bi-level programming models are firstly formulated to maximize the network accessible flow. The upper level focuses on choosing the potential links in the pre-specified candidate set, and the lower level assigns all the flows to the super network with principles of user equilibrium or system optimization with travel time budgets. Moreover, to handle uncertain potential demands in reality, the problem of interest is further formulated as two-stage stochastic programming models. To solve these proposed models, efficient heuristic algorithms are designed on the basis of probability search algorithm, Frank–Wolfe algorithm and Monte Carlo simulation method. Finally, two sets of numerical experiments in the Sioux Falls network and San Diego freeway network, are executed to test and analyze the rationality and efficiency of the proposed approaches.

Suggested Citation

  • Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
  • Handle: RePEc:eee:transb:v:110:y:2018:i:c:p:209-238
    DOI: 10.1016/j.trb.2018.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517305751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Krizek, 2003. "Neighborhood services, trip purpose, and tour-based travel," Transportation, Springer, vol. 30(4), pages 387-410, November.
    2. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    3. Murawski, Lisa & Church, Richard L., 2009. "Improving accessibility to rural health services: The maximal covering network improvement problem," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 102-110, June.
    4. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    5. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    6. R. Camporeale & L. Caggiani & A. Fonzone & M. Ottomanelli, 2017. "Quantifying the impacts of horizontal and vertical equity in transit route planning," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(1), pages 28-44, January.
    7. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    8. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    9. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    10. Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
    11. Abdulaal, Mustafa & LeBlanc, Larry J., 1979. "Continuous equilibrium network design models," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 19-32, March.
    12. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    13. Gao, Ziyou & Wu, Jianjun & Sun, Huijun, 2005. "Solution algorithm for the bi-level discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 479-495, July.
    14. Caggiani, Leonardo & Camporeale, Rosalia & Ottomanelli, Michele, 2017. "Facing equity in transportation Network Design Problem: A flexible constraints based model," Transport Policy, Elsevier, vol. 55(C), pages 9-17.
    15. Poorzahedy, Hossain & Turnquist, Mark A., 1982. "Approximate algorithms for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 16(1), pages 45-55, February.
    16. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    17. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    18. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    19. Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
    20. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    21. Wachs, Martin & Kumagai, T. Gordon, 1973. "Physical accessibility as a social indicator," Socio-Economic Planning Sciences, Elsevier, vol. 7(5), pages 437-456, October.
    22. Mokhtarian, Patricia L. & Chen, Cynthia, 2004. "TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(9-10), pages 643-675.
    23. R W Vickerman, 1974. "Accessibility, Attraction, and Potential: A Review of Some Concepts and Their Use in Determining Mobility," Environment and Planning A, , vol. 6(6), pages 675-691, December.
    24. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    25. Chiou, Suh-Wen, 2005. "Bilevel programming for the continuous transport network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 361-383, May.
    26. Pternea, Moschoula & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2015. "Sustainable urban transit network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 276-291.
    27. Giulio Cantarella & Antonino Vitetta, 2006. "The multi-criteria road network design problem in an urban area," Transportation, Springer, vol. 33(6), pages 567-588, November.
    28. Farvaresh, Hamid & Sepehri, Mohammad Mehdi, 2011. "A single-level mixed integer linear formulation for a bi-level discrete network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 623-640, September.
    29. An, Kun & Lo, Hong K., 2015. "Robust transit network design with stochastic demand considering development density," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 737-754.
    30. Li, Changmin & Yang, Hai & Zhu, Daoli & Meng, Qiang, 2012. "A global optimization method for continuous network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1144-1158.
    31. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    32. Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianqiang Wang & Wenlong Zhao & Chenglin Liu & Zhipeng Huang, 2023. "A System Optimization Approach for Trains’ Operation Plan with a Time Flexible Pricing Strategy for High-Speed Rail Corridors," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    2. Zhou, Guanyu & Dong, Qianyu & Zhao, Yuming & Wang, Han & Jian, Linni & Jia, Youwei, 2023. "Bilevel optimization approach to fast charging station planning in electrified transportation networks," Applied Energy, Elsevier, vol. 350(C).
    3. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    4. Di, Zhen & Yang, Lixing, 2020. "Reversible lane network design for maximizing the coupling measure between demand structure and network structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    5. Khurana, Archana & Adlakha, Veena & Lev, Benjamin, 2018. "Multi-index constrained transportation problem with bounds on availabilities, requirements and commodities," Operations Research Perspectives, Elsevier, vol. 5(C), pages 319-333.
    6. Sullivan, James L. & Novak, David C., 2024. "A method for evaluating accessibility in transportation problems considering social vulnerability," European Journal of Operational Research, Elsevier, vol. 317(3), pages 646-659.
    7. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    8. Jie Ma & Lin Cheng & Dawei Li & Qiang Tu, 2018. "Stochastic Electric Vehicle Network Considering Environmental Costs," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    9. Shixiong Jiang & Wei Guan & Liu Yang & Wenyi Zhang, 2020. "Feeder Bus Accessibility Modeling and Evaluation," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    10. Senlai Zhu & Jie Ma & Tianpei Tang & Quan Shi, 2020. "A Combined Modal and Route Choice Behavioral Complementarity Equilibrium Model with Users of Vehicles and Electric Bicycles," IJERPH, MDPI, vol. 17(10), pages 1-18, May.
    11. Qiang Tu & Han He & Xiaomin Lai & Chuan Jiang & Zhanji Zheng, 2024. "Identifying Critical Links in Degradable Road Networks Using a Traffic Demand-Based Indicator," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    12. Zhou, Yu & Wang, Yun & Yang, Hai & Yan, Xuedong, 2019. "Last train scheduling for maximizing passenger destination reachability in urban rail transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 79-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
    2. Di, Zhen & Yang, Lixing, 2020. "Reversible lane network design for maximizing the coupling measure between demand structure and network structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    4. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    5. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    6. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    7. Fontaine, Pirmin & Minner, Stefan, 2014. "Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 163-172.
    8. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    9. Wang, David Z.W. & Liu, Haoxiang & Szeto, W.Y., 2015. "A novel discrete network design problem formulation and its global optimization solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 213-230.
    10. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    11. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    12. Xiang Zhang & S. Travis Waller, 2019. "Implications of link-based equity objectives on transportation network design problem," Transportation, Springer, vol. 46(5), pages 1559-1589, October.
    13. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    14. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    15. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    16. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    17. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    18. Pirmin Fontaine & Stefan Minner, 2017. "A dynamic discrete network design problem for maintenance planning in traffic networks," Annals of Operations Research, Springer, vol. 253(2), pages 757-772, June.
    19. Wang, Guangmin & Gao, Ziyou & Xu, Meng, 2019. "Integrating link-based discrete credit charging scheme into discrete network design problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 176-187.
    20. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:110:y:2018:i:c:p:209-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.